If \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in \[x\] such that \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\] and \[F = \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\] then, \[F'(x)\] at \[x = a\] is ____________.
Answer
Verified
123k+ views
Hint: Differentiation: Differentiation is the area of change with respect to the input.
The value of differentiation of a constant term is always zero.
Product rule of differentiation: Let us consider \[f(x),g(x)\] be the function of \[x.\]
Then, \[\dfrac{d}{{dx}}[f(x)g(x)] = \dfrac{d}{{dx}}[f(x)]g(x) + f(x)\dfrac{d}{{dx}}[g(x)] = f'(x)g(x) + f(x)g'(x)\]
Complete step-by-step answer:
It is given that,
\[F = \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\]
Where, \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in\[x\].
Differentiate \[F\] with respect to \[x\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(x)}&{f{'_2}(x)}&{f{'_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}'(x)}&{{g_2}'(x)}&{{g_3}'(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{h{'_1}(x)}&{h{'_2}(x)}&{h{'_3}(x)}
\end{array}} \right)\]\[x = a\]
Substitute in \[F\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(a)}&{{f_2}(a)}&{{f_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{h{'_1}(a)}&{h{'_2}(a)}&{h{'_3}(a)}
\end{array}} \right)\]
As per the given condition, \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\]
Also we know by following the property of determinant, \[\det \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
a&b&c
\end{array}} \right) = 0\]we get,
\[F' = 0\]
Hence, \[F'(x)\] at \[x = a\] is \[0.\]
Note: The determinant of a matrix is a special number that can be calculated from a square matrix. The determinant helps us to find the inverse of a matrix.
Differentiation helps us to find rates of change. For example, it helps us to find the rate of change of velocity with respect to time (which is known as acceleration). It also allows us to find the rate of change of x with respect to y, which on a graph of y against x is the gradient of the curve (which is known as slope). There are a number of simple rules which can be used to allow us to differentiate many functions easily.
If y = some function of x (in other words if y is equal to an expression containing numbers and x's), then the derivative of y (with respect to x) is pronounced "dee y by dee x”.
The differentiation of matrices is the place where every one of us would make mistakes so we should be very careful while doing it.
The value of differentiation of a constant term is always zero.
Product rule of differentiation: Let us consider \[f(x),g(x)\] be the function of \[x.\]
Then, \[\dfrac{d}{{dx}}[f(x)g(x)] = \dfrac{d}{{dx}}[f(x)]g(x) + f(x)\dfrac{d}{{dx}}[g(x)] = f'(x)g(x) + f(x)g'(x)\]
Complete step-by-step answer:
It is given that,
\[F = \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right)\]
Where, \[{f_r}(x),{g_r}(x),{h_r}(x),r = 1,2,3\] are polynomials in\[x\].
Differentiate \[F\] with respect to \[x\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(x)}&{f{'_2}(x)}&{f{'_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}'(x)}&{{g_2}'(x)}&{{g_3}'(x)} \\
{{h_1}(x)}&{{h_2}(x)}&{{h_3}(x)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(x)}&{{f_2}(x)}&{{f_3}(x)} \\
{{g_1}(x)}&{{g_2}(x)}&{{g_3}(x)} \\
{h{'_1}(x)}&{h{'_2}(x)}&{h{'_3}(x)}
\end{array}} \right)\]\[x = a\]
Substitute in \[F\] we get,
\[F' = \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{f{'_1}(a)}&{f{'_2}(a)}&{f{'_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{{h_1}(a)}&{{h_2}(a)}&{{h_3}(a)}
\end{array}} \right) + \det \left( {\begin{array}{*{20}{c}}
{{f_1}(a)}&{{f_2}(a)}&{{f_3}(a)} \\
{{g_1}(a)}&{{g_2}(a)}&{{g_3}(a)} \\
{h{'_1}(a)}&{h{'_2}(a)}&{h{'_3}(a)}
\end{array}} \right)\]
As per the given condition, \[{f_r}(a) = {g_r}(a) = {h_r}(a),r = 1,2,3\]
Also we know by following the property of determinant, \[\det \left( {\begin{array}{*{20}{c}}
a&b&c \\
a&b&c \\
a&b&c
\end{array}} \right) = 0\]we get,
\[F' = 0\]
Hence, \[F'(x)\] at \[x = a\] is \[0.\]
Note: The determinant of a matrix is a special number that can be calculated from a square matrix. The determinant helps us to find the inverse of a matrix.
Differentiation helps us to find rates of change. For example, it helps us to find the rate of change of velocity with respect to time (which is known as acceleration). It also allows us to find the rate of change of x with respect to y, which on a graph of y against x is the gradient of the curve (which is known as slope). There are a number of simple rules which can be used to allow us to differentiate many functions easily.
If y = some function of x (in other words if y is equal to an expression containing numbers and x's), then the derivative of y (with respect to x) is pronounced "dee y by dee x”.
The differentiation of matrices is the place where every one of us would make mistakes so we should be very careful while doing it.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Degree of Dissociation and Its Formula With Solved Example for JEE