
If the magnetizing field on a ferromagnetic material is increased, its permeability
(A) Decreased
(B) Increased
(C) Is unaffected
(D) May be increased or decreased
Answer
216.3k+ views
Hint: Before discussing the variation of the permeability with the magnetizing field on a ferromagnetic material, we should briefly discuss ferromagnetic materials and permeability. Permeability in general refers to the tendency of a region to be penetrated or infiltrated by fluids. Magnetic permeability is the ratio of the magnetic induction to the magnetic intensity and supports the formation of a magnetic field. Ferromagnetic substances tend to develop a strong magnetic field when placed in an external magnetic field. Having discussed the basic terminology of the question, let’s head over to the detailed solution.
Formula Used: \[\mu =\dfrac{B}{H}\]
Complete step by step solution:
As discussed above, we know that the magnetic field developed inside a ferromagnetic material depends on the externally applied field and must vary as the external field is varied. On the surface of the earth, the earth’s magnetic field acts as the external magnetic field that induces magnetism in a ferromagnetic material.
The mathematical formula of permeability states that it is a ratio of the magnetic field density to the magnetic field strength, that is
Permeability \[(\mu )=\dfrac{B}{H}\] where \[B\] is the magnetic field density and \[H\] is the magnetic field strength.
From the expression given, we can say that magnetic permeability is inversely proportional to the magnetic field strength.
Hence we can say that the permeability decreases as the magnetizing field on a ferromagnetic substance is increased.
Therefore, option (A) is the correct answer to the given question.
Note:
The magnetic permeability of material also tells us of the material’s ability to get magnetized or the material’s resistance to the applied magnetic field. Hence ferromagnetic materials are often used to form permanent magnets as they can support a large amount of magnetic flux passing through them.
Formula Used: \[\mu =\dfrac{B}{H}\]
Complete step by step solution:
As discussed above, we know that the magnetic field developed inside a ferromagnetic material depends on the externally applied field and must vary as the external field is varied. On the surface of the earth, the earth’s magnetic field acts as the external magnetic field that induces magnetism in a ferromagnetic material.
The mathematical formula of permeability states that it is a ratio of the magnetic field density to the magnetic field strength, that is
Permeability \[(\mu )=\dfrac{B}{H}\] where \[B\] is the magnetic field density and \[H\] is the magnetic field strength.
From the expression given, we can say that magnetic permeability is inversely proportional to the magnetic field strength.
Hence we can say that the permeability decreases as the magnetizing field on a ferromagnetic substance is increased.
Therefore, option (A) is the correct answer to the given question.
Note:
The magnetic permeability of material also tells us of the material’s ability to get magnetized or the material’s resistance to the applied magnetic field. Hence ferromagnetic materials are often used to form permanent magnets as they can support a large amount of magnetic flux passing through them.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

