If X stands for the magnetic susceptibility of a substance, \[\mu \] stands for magnetic permeability and \[{\mu _0}\] stands for the permeability of free space, then:
(A) For paramagnetic substances \[X > 0,\mu = 0\]
(B) For paramagnetic substance \[\mu > {\mu _0},X > 0\]
(C) For diamagnetic substance \[X < 0,\mu < 0\]
(D) For ferromagnetic substance \[X < 0,\mu < {\mu _0}\]
Answer
Verified
122.7k+ views
Hint
In this question, we need to check for the values of X, \[\mu \] , and \[{\mu _0}\] for all three types of substances which are paramagnetic, diamagnetic, and ferromagnetic. We will then have to compare these values with each other to find the correct option for our question.
Complete step by step solution
As we know that the relation between X and \[\mu \] of a substance is given by
\[X = \dfrac{\mu }{{{\mu _0}}} - 1\]
In a paramagnetic substance, there are some unpaired electrons that are polarized in the presence of an external magnetic field. This means that X for paramagnetic > 0. For a diamagnetic substance, the number of paired electrons is in majority. Also, these substances are polarized in the direction opposite to the external magnetic field. This means that \[X < 0\] . Ferromagnetic substances polarize strongly in the presence of an external magnetic field and thus they have high susceptibility. Using the above formula, we find that \[\mu > {\mu _0}\] for a paramagnetic substance because \[\dfrac{\mu }{{{\mu _0}}} - 1\] should always be greater than 0.
Therefore, the correct answer is option B.
Note:
The presence of a paired electron is what makes the diamagnetic substances resistant to the magnetic field. They are such that the magnetic field does not even pass through them like ferromagnetic and paramagnetic. It just sweeps away like water waves around a rock.
In this question, we need to check for the values of X, \[\mu \] , and \[{\mu _0}\] for all three types of substances which are paramagnetic, diamagnetic, and ferromagnetic. We will then have to compare these values with each other to find the correct option for our question.
Complete step by step solution
As we know that the relation between X and \[\mu \] of a substance is given by
\[X = \dfrac{\mu }{{{\mu _0}}} - 1\]
In a paramagnetic substance, there are some unpaired electrons that are polarized in the presence of an external magnetic field. This means that X for paramagnetic > 0. For a diamagnetic substance, the number of paired electrons is in majority. Also, these substances are polarized in the direction opposite to the external magnetic field. This means that \[X < 0\] . Ferromagnetic substances polarize strongly in the presence of an external magnetic field and thus they have high susceptibility. Using the above formula, we find that \[\mu > {\mu _0}\] for a paramagnetic substance because \[\dfrac{\mu }{{{\mu _0}}} - 1\] should always be greater than 0.
Therefore, the correct answer is option B.
Note:
The presence of a paired electron is what makes the diamagnetic substances resistant to the magnetic field. They are such that the magnetic field does not even pass through them like ferromagnetic and paramagnetic. It just sweeps away like water waves around a rock.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Charging and Discharging of Capacitor
Physics Average Value and RMS Value JEE Main 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
JEE Main Course 2025: Get All the Relevant Details
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main 2022 July 28 Shift 2 Question Paper with Answer Keys & Solutions