
If ${x^a}.{x^b}.{x^c} = 1{\text{ then }}{a^3} + {b^3} + {c^3}$ is equal to
(A). 9
(B). $abc$
(C). $a + b + c$
(D).$3abc$
Answer
232.8k+ views
Hint- In order to solve this question, take log in both sides of the first expression to find the value of $a + b + c$ and then by using the formula given as ${\left( {a + b + c} \right)^3} = \left( {{a^3} + {b^3} + {c^3}} \right) + 3\left( {\left( {a + b + c} \right)\left( {ab + bc + ca} \right) - abc} \right)$ we will proceed further.
Complete step by step answer:
Given equation ${x^a}.{x^b}.{x^c} = 1.$
We have to find ${a^3} + {b^3} + {c^3}$
As we know that ${z^p}.{z^q}.{z^r} = {z^{p + q + r}}{\text{ }}$
So by using it in given equation, we get
${x^{a + b + c}} = 1$
Now, by taking log to both sides, we get
$
\Rightarrow \log {x^{a + b + c}} = \log 1 \\
\Rightarrow \left( {a + b + c} \right)\log x = 0{\text{ }}\left[ {\because \log {x^p} = p\log x{\text{ and }}\log 1 = 0} \right] \\
{\text{either }}\left( {a + b + c} \right) = 0{\text{ or }}\log x = 0 \\
$
Now, we will use the formula of ${\left( {a + b + c} \right)^3}$ which is given as
${\left( {a + b + c} \right)^3} = \left( {{a^3} + {b^3} + {c^3}} \right) + 3\left( {\left( {a + b + c} \right)\left( {ab + bc + ca} \right) - abc} \right)$
Substituting the value of $\left( {a + b + c} \right) = 0$ we get
\[ \Rightarrow 0 = \left( {{a^3} + {b^3} + {c^3}} \right) + 3\left( {0 \times \left( {ab + bc + ca} \right) - abc} \right)\]
By simplifying the above equation, we ge
\[
\Rightarrow 0 = \left( {{a^3} + {b^3} + {c^3}} \right) + 3\left( { - abc} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc \\
\]
Hence, the value of \[{a^3} + {b^3} + {c^3} = 3abc\] and the correct answer is “D”.
Note- In order to solve these types of questions, first of all remember all the algebraic identities and you must be aware of how to solve linear algebraic equations and have knowledge of terms like variables. In the above question we have also used logarithmic function properties. So, you must have a good knowledge of logarithm and exponents.
Complete step by step answer:
Given equation ${x^a}.{x^b}.{x^c} = 1.$
We have to find ${a^3} + {b^3} + {c^3}$
As we know that ${z^p}.{z^q}.{z^r} = {z^{p + q + r}}{\text{ }}$
So by using it in given equation, we get
${x^{a + b + c}} = 1$
Now, by taking log to both sides, we get
$
\Rightarrow \log {x^{a + b + c}} = \log 1 \\
\Rightarrow \left( {a + b + c} \right)\log x = 0{\text{ }}\left[ {\because \log {x^p} = p\log x{\text{ and }}\log 1 = 0} \right] \\
{\text{either }}\left( {a + b + c} \right) = 0{\text{ or }}\log x = 0 \\
$
Now, we will use the formula of ${\left( {a + b + c} \right)^3}$ which is given as
${\left( {a + b + c} \right)^3} = \left( {{a^3} + {b^3} + {c^3}} \right) + 3\left( {\left( {a + b + c} \right)\left( {ab + bc + ca} \right) - abc} \right)$
Substituting the value of $\left( {a + b + c} \right) = 0$ we get
\[ \Rightarrow 0 = \left( {{a^3} + {b^3} + {c^3}} \right) + 3\left( {0 \times \left( {ab + bc + ca} \right) - abc} \right)\]
By simplifying the above equation, we ge
\[
\Rightarrow 0 = \left( {{a^3} + {b^3} + {c^3}} \right) + 3\left( { - abc} \right) \\
\Rightarrow {a^3} + {b^3} + {c^3} = 3abc \\
\]
Hence, the value of \[{a^3} + {b^3} + {c^3} = 3abc\] and the correct answer is “D”.
Note- In order to solve these types of questions, first of all remember all the algebraic identities and you must be aware of how to solve linear algebraic equations and have knowledge of terms like variables. In the above question we have also used logarithmic function properties. So, you must have a good knowledge of logarithm and exponents.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

