
If ${\text{y = cot }}{{\text{x}}^3}$ is a given composite function then, Differentiate the following function y w.r.t x.
Answer
134.1k+ views
Hint- Here we can use the chain rule to solve this. To do that, we'll have to determine what the "outer" function is and what the "inner" function composed in the outer function is. After determining outer and inner function we can use the chain rule (F'(x)=f'(g(x)) (g'(x))) which is mainly used to differentiate the composite function.
Complete step-by-step solution -
In the given question, cot(x) is the "inner" function that is composed as part of the ${\text{cot }}{{\text{x}}^3}$..
The chain rule is:
F'(x)=f'(g(x)) (g'(x))
Language wise- the derivative of the outer function f(x) (with the inside function g(x) left alone!) times the derivative of the inner function.
In the given question- function f(x) = cot(x) and g(x)= ${{\text{x}}^3}$
(1) The derivative of the outer function = f(x) = cot(x) (with the inside function left alone) is:
Here we consider ${{\text{x}}^3}$ the same as x.
$\dfrac{{d\cot {\text{x}}}}{{dx}} = - {\text{cs}}{{\text{c}}^2}{\text{x}}$
2) The derivative of the inner function g(x)= ${{\text{x}}^3}$
$\dfrac{{d{{\text{x}}^3}}}{{dx}} = 3{{\text{x}}^2}$
Combining the two steps(1) and (2) through multiplication to get the derivative:
$\dfrac{{dy}}{{dx}} = \dfrac{{d\cot {{\text{x}}^3}}}{{dx}} = - {\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.(3{{\text{x}}^2})$
\[\dfrac{{dy}}{{dx}} = - (3{{\text{x}}^2}){\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.\]
Hence Differentiation of ${\text{y = cot }}{{\text{x}}^3}$ w.r.t x will be equal to $ - (3{{\text{x}}^2}){\text{cs}}{{\text{c}}^2}{{\text{x}}^3}$
Note- This particular problem can also be solved by letting ${{\text{x}}^3}$ equal to t.
Given: ${\text{y = cot }}{{\text{x}}^3}$
Put ${{\text{x}}^3}$=t
Differentiating w.r.t. x on both side
$3{{\text{x}}^2}$=$\dfrac{{dt}}{{dx}}$
${\text{y = cot }}{{\text{x}}^3} \Rightarrow \cot ({\text{t}})$
Differentiating w.r.t. x on both side
$\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{d\cot ({\text{t}})}}{{dx}} \Rightarrow - {\text{cose}}{{\text{c}}^2}{\text{t}}\dfrac{{dt}}{{dx}}$
On putting ${{\text{x}}^3}$=t and, $3{{\text{x}}^2}$=$\dfrac{{dt}}{{dx}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{d\cot {{\text{x}}^3}}}{{dx}} = - {\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.(3{{\text{x}}^2})$
\[\dfrac{{dy}}{{dx}} = - (3{{\text{x}}^2}){\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.\]
Complete step-by-step solution -
In the given question, cot(x) is the "inner" function that is composed as part of the ${\text{cot }}{{\text{x}}^3}$..
The chain rule is:
F'(x)=f'(g(x)) (g'(x))
Language wise- the derivative of the outer function f(x) (with the inside function g(x) left alone!) times the derivative of the inner function.
In the given question- function f(x) = cot(x) and g(x)= ${{\text{x}}^3}$
(1) The derivative of the outer function = f(x) = cot(x) (with the inside function left alone) is:
Here we consider ${{\text{x}}^3}$ the same as x.
$\dfrac{{d\cot {\text{x}}}}{{dx}} = - {\text{cs}}{{\text{c}}^2}{\text{x}}$
2) The derivative of the inner function g(x)= ${{\text{x}}^3}$
$\dfrac{{d{{\text{x}}^3}}}{{dx}} = 3{{\text{x}}^2}$
Combining the two steps(1) and (2) through multiplication to get the derivative:
$\dfrac{{dy}}{{dx}} = \dfrac{{d\cot {{\text{x}}^3}}}{{dx}} = - {\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.(3{{\text{x}}^2})$
\[\dfrac{{dy}}{{dx}} = - (3{{\text{x}}^2}){\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.\]
Hence Differentiation of ${\text{y = cot }}{{\text{x}}^3}$ w.r.t x will be equal to $ - (3{{\text{x}}^2}){\text{cs}}{{\text{c}}^2}{{\text{x}}^3}$
Note- This particular problem can also be solved by letting ${{\text{x}}^3}$ equal to t.
Given: ${\text{y = cot }}{{\text{x}}^3}$
Put ${{\text{x}}^3}$=t
Differentiating w.r.t. x on both side
$3{{\text{x}}^2}$=$\dfrac{{dt}}{{dx}}$
${\text{y = cot }}{{\text{x}}^3} \Rightarrow \cot ({\text{t}})$
Differentiating w.r.t. x on both side
$\dfrac{{dy}}{{dx}}{\text{ = }}\dfrac{{d\cot ({\text{t}})}}{{dx}} \Rightarrow - {\text{cose}}{{\text{c}}^2}{\text{t}}\dfrac{{dt}}{{dx}}$
On putting ${{\text{x}}^3}$=t and, $3{{\text{x}}^2}$=$\dfrac{{dt}}{{dx}}$
$\dfrac{{dy}}{{dx}} = \dfrac{{d\cot {{\text{x}}^3}}}{{dx}} = - {\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.(3{{\text{x}}^2})$
\[\dfrac{{dy}}{{dx}} = - (3{{\text{x}}^2}){\text{cs}}{{\text{c}}^2}{{\text{x}}^3}.\]
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
