Answer
Verified
112.8k+ views
Hint: We use the formula for distance between objective lens and eyepiece. The formula for the distance between the two lenses is simply the sum of the focal lengths of both the lenses. The focal lengths of both the lenses are given in the options. We see which of the following focal lengths given in the options satisfies the formula for distance between the two lenses.
Formula used: Distance between the objective and eyepiece in an astronomical telescope is $d = {f_o} + {f_e}$
Where,
${f_e}$ is the focal length of eyepiece
${f_o}$ is the focal length of objective lens
$d$ is the distance between the two lenses
Complete step by step solution: From the question the distance between the eyepiece and the objective lens is
$d = 36cm$
In an astronomical telescope the distance between the two lenses is the sum of focal lengths of the lenses
$d = {f_o} + {f_e}$
From the given options the sum of focal lengths that gives us $d = 36cm$ is only option (A) and (D)
$d = 45 - 9 = 36cm$
$d = 30 + 6 = 36cm$
Hence option (A) ${f_o} = 45cm,{f_e} = - 9cm$ and (D) ${f_o} = 30cm,{f_e} = 6cm$ are the correct answers.
Additional information: An astronomical telescope having an objective with a long focal length and an eyepiece with a short focal length, usually used for observing celestial bodies like the moon and the planets in the solar system.
Note: In an astronomical telescope both the lenses are convex lenses. The light from the object at infinity gets refracted and forms an image at focal length of the objective lens. This image becomes the object for eye piece. The image of the eyepiece is magnified. This is why the distance between the two lenses is the sum of their focal lengths.
Formula used: Distance between the objective and eyepiece in an astronomical telescope is $d = {f_o} + {f_e}$
Where,
${f_e}$ is the focal length of eyepiece
${f_o}$ is the focal length of objective lens
$d$ is the distance between the two lenses
Complete step by step solution: From the question the distance between the eyepiece and the objective lens is
$d = 36cm$
In an astronomical telescope the distance between the two lenses is the sum of focal lengths of the lenses
$d = {f_o} + {f_e}$
From the given options the sum of focal lengths that gives us $d = 36cm$ is only option (A) and (D)
$d = 45 - 9 = 36cm$
$d = 30 + 6 = 36cm$
Hence option (A) ${f_o} = 45cm,{f_e} = - 9cm$ and (D) ${f_o} = 30cm,{f_e} = 6cm$ are the correct answers.
Additional information: An astronomical telescope having an objective with a long focal length and an eyepiece with a short focal length, usually used for observing celestial bodies like the moon and the planets in the solar system.
Note: In an astronomical telescope both the lenses are convex lenses. The light from the object at infinity gets refracted and forms an image at focal length of the objective lens. This image becomes the object for eye piece. The image of the eyepiece is magnified. This is why the distance between the two lenses is the sum of their focal lengths.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics