
In damped oscillations, damping force is directly proportional to speed to oscillator. If amplitude becomes half of its maximum value in 1s, then after 2s amplitude will be (initial amplitude = ${A_0}$)
A. $\dfrac{1}{4}{A_0}$
B. $\dfrac{1}{2}{A_0}$
C. $\dfrac{1}{5}{A_0}$
.D. $\dfrac{1}{7}{A_0}$
Answer
139.8k+ views
Hint:In case of damped oscillations, first try to find the relation between the amplitude at time t and the initial amplitude. Then put the values of both the amplitude and try to find the time t and finally using that time value find the value of amplitude after 2 sec time.
Formula used
$A = {A_0}{e^{ - \alpha t}}$
Where, A is the amplitude at time t.
And ${A_0}$is the initial amplitude.
Complete answer:
For case 1: t = 1 sec
Given the amplitude at time t = 1 sec becomes half of its initial amplitude.
$A = \dfrac{{{A_0}}}{2}$
Putting this value in the formula, we get;
$\dfrac{{{A_0}}}{2} = {A_0}{e^{ - \alpha }}$
After solving, we get: ${e^{ - \alpha }} = \dfrac{1}{2}$ (equation 1)
For case 2: t=2 sec
$A = {A_0}{e^{ - 2\alpha }}$
Putting the value from equation 1, we get;
$A = {A_0}{\left( {\dfrac{1}{2}} \right)^2}$
After solving, we get;
$A = \dfrac{{{A_0}}}{4}$
Therefore, amplitude at time t = 2 sec will become 1/4 times of the initial amplitude.
Hence, the correct answer is Option(A).
Note:Be careful about the change in amplitude according to the time given and how many times it becomes of the initial amplitude or the maximum amplitude. Use the same formula for both the case at t = 1 sec and t = 2 sec. Also use the value of the ${e^{ - \alpha }} = \dfrac{1}{2}$to get the required result.
Formula used
$A = {A_0}{e^{ - \alpha t}}$
Where, A is the amplitude at time t.
And ${A_0}$is the initial amplitude.
Complete answer:
For case 1: t = 1 sec
Given the amplitude at time t = 1 sec becomes half of its initial amplitude.
$A = \dfrac{{{A_0}}}{2}$
Putting this value in the formula, we get;
$\dfrac{{{A_0}}}{2} = {A_0}{e^{ - \alpha }}$
After solving, we get: ${e^{ - \alpha }} = \dfrac{1}{2}$ (equation 1)
For case 2: t=2 sec
$A = {A_0}{e^{ - 2\alpha }}$
Putting the value from equation 1, we get;
$A = {A_0}{\left( {\dfrac{1}{2}} \right)^2}$
After solving, we get;
$A = \dfrac{{{A_0}}}{4}$
Therefore, amplitude at time t = 2 sec will become 1/4 times of the initial amplitude.
Hence, the correct answer is Option(A).
Note:Be careful about the change in amplitude according to the time given and how many times it becomes of the initial amplitude or the maximum amplitude. Use the same formula for both the case at t = 1 sec and t = 2 sec. Also use the value of the ${e^{ - \alpha }} = \dfrac{1}{2}$to get the required result.
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main 2025 Exam Pattern: Marking Scheme, Syllabus

JEE Main Course 2025 - Important Updates and Details

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Physics Average Value and RMS Value JEE Main 2025

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Collision - Important Concepts and Tips for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

A pressure of 100 kPa causes a decrease in volume of class 11 physics JEE_Main

Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics In Hindi Chapter 1 Physical World

NCERT Solutions for Class 11 Physics Chapter 14 Waves

JEE Advanced 2025 Notes

A water pump of 1 horse power is required to flow water class 11 physics JEE_Main
