
In the above circuit the current in each resistance is :
a) 0 A
b) 1 A
c) 0.25 A
d) 0.5 A

Answer
133.5k+ views
Hint: The given circuit can be split using Kirchhoff’s law. Apply Kirchhoff’s law by splitting the circuit into 3 loops and identify the current at each resistance.
Complete step by step Solution:
The given circuit can be split into 3 loops , loop 1 consisting of two 2V source and 1 ohm resistor and the second loop consisting of two 2V source and two 1 ohm resistors and the final loop similar as the second loop.
To identify the current at each loop we can use Kirchhoff’s Voltage rule and grounding method. At the grounding method, we can close the loop at one point where we can consider it as ground.
Now the flow of current takes place from the positive node of 2V source in the lower section to the negative node of the source in lower section.
Applying KCL at node 1,
Note: Current at loop1 is assumed as i1 , current at loop2 is assumed as i2 and current at loop3 is assumed as i3.
The current flowing in loop 1 is i1
\[2 - 2 + ({i_1} - {i_2}) \times 1 = 0\]
\[ \Rightarrow {i_1} = {i_2}\]
Applying KCL at node 2,
\[2 + (({i_1} - {i_2}) \times 1) - 2 + (({i_2} - {i_3}) \times 1) = 0\]
Since, i1=i2
\[2 - 2 + (({i_2} - {i_3}) \times 1) = 0\]
\[ \Rightarrow {i_2} = {i_3}\]
Applying KVL at loop 3,
\[2 + (({i_2} - {i_3}) \times 1) - 2 + ({i_3} \times 1) = 0\]
Since i2=i3
\[ \Rightarrow 2 - 2 + ({i_3} \times 1) = 0\]
\[ \Rightarrow {i_3} = 0\]
Therefore since \[{i_2} = {i_3}\], the value of \[{i_2} = 0\]
And since the value of \[{i_1} = {i_2}\]
The current value in loop 1 is also equal to 0.
Hence it is found that the value of current across all the resistors to be zero. Hence, option(a) is the right answer.
Note:
Kirchhoff’s Voltage law states that in any closed loop network, the total voltage that is circulating in the loop is equal to the algebraic sum of all voltage drops inside the loop.
Complete step by step Solution:
The given circuit can be split into 3 loops , loop 1 consisting of two 2V source and 1 ohm resistor and the second loop consisting of two 2V source and two 1 ohm resistors and the final loop similar as the second loop.
To identify the current at each loop we can use Kirchhoff’s Voltage rule and grounding method. At the grounding method, we can close the loop at one point where we can consider it as ground.
Now the flow of current takes place from the positive node of 2V source in the lower section to the negative node of the source in lower section.
Applying KCL at node 1,
Note: Current at loop1 is assumed as i1 , current at loop2 is assumed as i2 and current at loop3 is assumed as i3.
The current flowing in loop 1 is i1
\[2 - 2 + ({i_1} - {i_2}) \times 1 = 0\]
\[ \Rightarrow {i_1} = {i_2}\]
Applying KCL at node 2,
\[2 + (({i_1} - {i_2}) \times 1) - 2 + (({i_2} - {i_3}) \times 1) = 0\]
Since, i1=i2
\[2 - 2 + (({i_2} - {i_3}) \times 1) = 0\]
\[ \Rightarrow {i_2} = {i_3}\]
Applying KVL at loop 3,
\[2 + (({i_2} - {i_3}) \times 1) - 2 + ({i_3} \times 1) = 0\]
Since i2=i3
\[ \Rightarrow 2 - 2 + ({i_3} \times 1) = 0\]
\[ \Rightarrow {i_3} = 0\]
Therefore since \[{i_2} = {i_3}\], the value of \[{i_2} = 0\]
And since the value of \[{i_1} = {i_2}\]
The current value in loop 1 is also equal to 0.
Hence it is found that the value of current across all the resistors to be zero. Hence, option(a) is the right answer.
Note:
Kirchhoff’s Voltage law states that in any closed loop network, the total voltage that is circulating in the loop is equal to the algebraic sum of all voltage drops inside the loop.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
