
In the neutralization process of ${{H}_{3}}P{{O}_{4}}$ and NaOH, the number of buffers formed will be __________:
[A] 3
[B] 1
[C] 2
[D] 4
Answer
132.9k+ views
Hint: A buffer solution is a solution which maintains the pH of a solution. Here, upon neutralisation the acid will lose its protons. The correct answer here is the number of protons in the acid i.e. the number of protons it has that is the number of buffers that will be formed here upon neutralisation.
Complete Step by Step Solution: We know that generally we can define a buffer solution as a solution which is resistant to change in pH upon addition of a small amount of base or acid. Buffer solution usually consists of a weak acid and salt of its conjugate base or of a weak base and a salt of its conjugate acid.
Here, we have phosphoric acid with sodium hydroxide. Let us write down its neutralization reaction. Here as we can see phosphoric acid has three removable protons thus for neutralisation three protons must be replaced.
We can write the reaction as-
\[{{H}_{3}}P{{O}_{4}}+NaOH\to Na{{H}_{2}}P{{O}_{4}}+{{H}_{2}}O\]
When the first proton is replaced, we get monobasic sodium phosphate.
Similarly, we can write the reaction of the neutralisation of the second proton as-
\[Na{{H}_{2}}P{{O}_{4}}+NaOH\to N{{a}_{2}}HP{{O}_{4}}+{{H}_{2}}O\]
Here, we get dibasic sodium phosphate.
And the third proton neutralisation reaction will be-
\[N{{a}_{2}}HP{{O}_{4}}+NaOH\to N{{a}_{3}}P{{O}_{4}}+{{H}_{2}}O\]
Here, we get tribasic sodium phosphate.
Here we can see that phosphoric acid is a weak acid and it is neutralised thus, the buffers we obtained are acidic buffers.
Here, we obtained three buffers upon neutralisation of each proton as we can see form the above reactions.
Therefore, the correct answer is option [A] 3.
Note: Buffer solutions are of two types- Acidic buffer and Basic buffer. Acidic buffer consists of a weak acid and its salt, along with a strong base. Basic buffer is prepared by mixing a weak base with its conjugate salt along with a strong acid.
A basic buffer can be formed from a mixture of ammonia and ammonium chloride in water.
$N{{H}_{3}}+HCl\to N{{H}_{4}}Cl$
An acidic buffer can be made from the mixture of sodium acetate and acetic acid in water.
$C{{H}_{3}}COOH-{{H}^{+}}\to C{{H}_{3}}CO{{O}^{-}}$
Complete Step by Step Solution: We know that generally we can define a buffer solution as a solution which is resistant to change in pH upon addition of a small amount of base or acid. Buffer solution usually consists of a weak acid and salt of its conjugate base or of a weak base and a salt of its conjugate acid.
Here, we have phosphoric acid with sodium hydroxide. Let us write down its neutralization reaction. Here as we can see phosphoric acid has three removable protons thus for neutralisation three protons must be replaced.
We can write the reaction as-
\[{{H}_{3}}P{{O}_{4}}+NaOH\to Na{{H}_{2}}P{{O}_{4}}+{{H}_{2}}O\]
When the first proton is replaced, we get monobasic sodium phosphate.
Similarly, we can write the reaction of the neutralisation of the second proton as-
\[Na{{H}_{2}}P{{O}_{4}}+NaOH\to N{{a}_{2}}HP{{O}_{4}}+{{H}_{2}}O\]
Here, we get dibasic sodium phosphate.
And the third proton neutralisation reaction will be-
\[N{{a}_{2}}HP{{O}_{4}}+NaOH\to N{{a}_{3}}P{{O}_{4}}+{{H}_{2}}O\]
Here, we get tribasic sodium phosphate.
Here we can see that phosphoric acid is a weak acid and it is neutralised thus, the buffers we obtained are acidic buffers.
Here, we obtained three buffers upon neutralisation of each proton as we can see form the above reactions.
Therefore, the correct answer is option [A] 3.
Note: Buffer solutions are of two types- Acidic buffer and Basic buffer. Acidic buffer consists of a weak acid and its salt, along with a strong base. Basic buffer is prepared by mixing a weak base with its conjugate salt along with a strong acid.
A basic buffer can be formed from a mixture of ammonia and ammonium chloride in water.
$N{{H}_{3}}+HCl\to N{{H}_{4}}Cl$
An acidic buffer can be made from the mixture of sodium acetate and acetic acid in water.
$C{{H}_{3}}COOH-{{H}^{+}}\to C{{H}_{3}}CO{{O}^{-}}$
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
