
In the reaction of \[KMn{O_4}\] with \[{H_2}{C_2}{0_4}\] , 20 mL of 0.2 M \[KMn{O_4}\] is not equivalent to (in acidic medium):
A) 120 mL of 0.25 M \[{H_2}{C_2}{0_4}\]
B)100 mL of 0.1 M \[{H_2}{C_2}{0_4}\]
C)500 mL of 0.2 M \[{H_2}{C_2}{0_4}\]
D)10 mL of 1M \[{H_2}{C_2}{0_4}\]
Answer
232.8k+ views
Hint: To solve this problem, we must first find the oxidation state of Mn in \[KMn{O_4}\] . Then we must find the manganese-based products formed by the reaction between \[KMn{O_4}\] and oxalic acid \[({H_2}{C_2}{0_4})\] . Finally, we will find the oxidation state of Mn in the corresponding product and compare the two values to find out the equivalent weight.
Complete step by step answer:
The reaction between \[KMn{O_4}\] and oxalic acid takes place in an acidic medium. To create this acidic environment, sulphuric acid is used. Hence, this reaction can be represented as:
\[2KMn{O_4} + 5{H_2}{C_2}{O_4}^ + 3{H_2}S{O_4} \to 2MnS{O_4}\,\, + {K_2}S{O_4} + 10C{O_{2}} + 8{H_{2}}O.\]
Now, from this reaction, it is clear that 2 moles of \[KMn{O_4}\] reacts with 5 moles of \[{H_2}{C_2}{0_4}\] . Therefore 1 mole of \[KMn{O_4}\] reacts with \[\dfrac{5}{2}\] moles of \[{H_2}{C_2}{0_4}\] .
Before we proceed with the question, let us first calculate the oxidation states of manganese in potassium permanganate.
Let O. S. of Mn in \[KMn{O_4}\] = x. We know that the oxidation states of Potassium = \[K = + 1\] ; and that of oxygen = \[O = - 2\] . Also, the net charge on the compound is zero. Hence, the oxidation state of potassium permanganate can be represented as follows:
\[
O.S. = O.S.\left( K \right) + O.S.\left( {Mn} \right) + \left[ {O.S.\left( O \right)} \right] \times \left( 4 \right) \\
\begin{array}{*{20}{l}}
{0 = \left( { + 1} \right) + \left( x \right) + 4 \times \left( { - 2} \right)} \\
{x = 8-1 = + 7}
\end{array} \\
\]
Hence the oxidation state of Mn in \[KMn{O_4}\] is +7.
The manganese-based product formed in the reaction is \[MnS{O_4}\] . Let the oxidation state of Mn in \[MnS{O_4}\] be y. we know that the oxidation state of \[S{O_4}\] the molecule is \[\left( { - 2} \right)\] . Also, the net charge on this compound is zero. Hence, the oxidation state of \[MnS{O_4}\] being represented as:
\[
O.S.(MnS{O_4}) = O.S.\left( {Mn} \right) + O.S.(S{O_4}) \\
\begin{array}{*{20}{l}}
{0 = y + \left( { - 2} \right)} \\
{y = + 2}
\end{array} \\
\]
Now, the change of oxidation state is, \[ + 7 - 2 = 5\]
The number of moles of. 20 mL of 0.2 M \[KMn{O_4}\] is,
\[
\dfrac{{20 \times 0.2}}{{1000}} \\
= \dfrac{4}{{1000}}moles \\
\]
So as per reaction the number of moles of \[{H_2}{C_2}{0_4}\] required,
\[
= \dfrac{4}{{1000}}\, \times \dfrac{5}{2} \\
= \dfrac{1}{{100}}moles \\
\]
Now, check the option for the same equivalent \[{H_2}{C_2}{0_4}\] .
In the case of 120 mL of 0.25 M, \[{H_2}{C_2}{0_4}\] the number of moles is
\[
= \dfrac{{0.25}}{{1000}} \times 120 \\
= \dfrac{3}{{100}}moles \\
\]
In the case of 500 mL of 0.2 M \[{H_2}{C_2}{0_4}\] the number of moles,
\[
= \dfrac{{0.2}}{{1000}} \times 500 \\
= \dfrac{1}{{10}}moles \\
\]
So, option A and C are not equivalent with20 mL of 0.2 M \[KMn{O_4}\]
The correct options are A and C.
Note: \[KMn{O_4}\] or potassium permanganate is a crystalline solid which is usually purplish in color. On the other hand, oxalic acid is an organic compound that is found in the form of a white crystalline solid. In this reaction \[KMn{O_4}\] is an oxidizing reagent and oxalic acid \[({H_2}{C_2}{0_4})\] is a reducing agent.
Complete step by step answer:
The reaction between \[KMn{O_4}\] and oxalic acid takes place in an acidic medium. To create this acidic environment, sulphuric acid is used. Hence, this reaction can be represented as:
\[2KMn{O_4} + 5{H_2}{C_2}{O_4}^ + 3{H_2}S{O_4} \to 2MnS{O_4}\,\, + {K_2}S{O_4} + 10C{O_{2}} + 8{H_{2}}O.\]
Now, from this reaction, it is clear that 2 moles of \[KMn{O_4}\] reacts with 5 moles of \[{H_2}{C_2}{0_4}\] . Therefore 1 mole of \[KMn{O_4}\] reacts with \[\dfrac{5}{2}\] moles of \[{H_2}{C_2}{0_4}\] .
Before we proceed with the question, let us first calculate the oxidation states of manganese in potassium permanganate.
Let O. S. of Mn in \[KMn{O_4}\] = x. We know that the oxidation states of Potassium = \[K = + 1\] ; and that of oxygen = \[O = - 2\] . Also, the net charge on the compound is zero. Hence, the oxidation state of potassium permanganate can be represented as follows:
\[
O.S. = O.S.\left( K \right) + O.S.\left( {Mn} \right) + \left[ {O.S.\left( O \right)} \right] \times \left( 4 \right) \\
\begin{array}{*{20}{l}}
{0 = \left( { + 1} \right) + \left( x \right) + 4 \times \left( { - 2} \right)} \\
{x = 8-1 = + 7}
\end{array} \\
\]
Hence the oxidation state of Mn in \[KMn{O_4}\] is +7.
The manganese-based product formed in the reaction is \[MnS{O_4}\] . Let the oxidation state of Mn in \[MnS{O_4}\] be y. we know that the oxidation state of \[S{O_4}\] the molecule is \[\left( { - 2} \right)\] . Also, the net charge on this compound is zero. Hence, the oxidation state of \[MnS{O_4}\] being represented as:
\[
O.S.(MnS{O_4}) = O.S.\left( {Mn} \right) + O.S.(S{O_4}) \\
\begin{array}{*{20}{l}}
{0 = y + \left( { - 2} \right)} \\
{y = + 2}
\end{array} \\
\]
Now, the change of oxidation state is, \[ + 7 - 2 = 5\]
The number of moles of. 20 mL of 0.2 M \[KMn{O_4}\] is,
\[
\dfrac{{20 \times 0.2}}{{1000}} \\
= \dfrac{4}{{1000}}moles \\
\]
So as per reaction the number of moles of \[{H_2}{C_2}{0_4}\] required,
\[
= \dfrac{4}{{1000}}\, \times \dfrac{5}{2} \\
= \dfrac{1}{{100}}moles \\
\]
Now, check the option for the same equivalent \[{H_2}{C_2}{0_4}\] .
In the case of 120 mL of 0.25 M, \[{H_2}{C_2}{0_4}\] the number of moles is
\[
= \dfrac{{0.25}}{{1000}} \times 120 \\
= \dfrac{3}{{100}}moles \\
\]
In the case of 500 mL of 0.2 M \[{H_2}{C_2}{0_4}\] the number of moles,
\[
= \dfrac{{0.2}}{{1000}} \times 500 \\
= \dfrac{1}{{10}}moles \\
\]
So, option A and C are not equivalent with20 mL of 0.2 M \[KMn{O_4}\]
The correct options are A and C.
Note: \[KMn{O_4}\] or potassium permanganate is a crystalline solid which is usually purplish in color. On the other hand, oxalic acid is an organic compound that is found in the form of a white crystalline solid. In this reaction \[KMn{O_4}\] is an oxidizing reagent and oxalic acid \[({H_2}{C_2}{0_4})\] is a reducing agent.
Recently Updated Pages
Types of Solutions in Chemistry: Explained Simply

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

