
In triangle $ABC$ angle $B = {90^ \circ }$and $BC = 5\;{\text{cm}},\;AC - AB = 1$. Evaluate $\dfrac{{1 + \sin C}}{{1 + \cos C}}$.
Answer
232.8k+ views
Hint: Use Pythagorean theorem to find the value of $AB$ and then find the value of $\sin $ and $\cos $. Substitute these values in the given form and use the given conditions to get the exact value.
Complete step by step solution:
Trigonometry ratios are the ratios between edges of the right-angle triangle. There are six trigonometric ratios sin, cos, tan, cosec, sec, cot. Sine function defined as the ratio of perpendicular to the hypotenuse. Cos function is defined as the ratio of base to the hypotenuse. Tan function is defined as the ratio of perpendicular to the base. The reciprocal of these functions defines cosec, sec and cot respectively.
According to the question it is given that in triangle $ABC$,
$BC = 5\;{\text{cm}},\;AC - AB = 1$
To find the value of $AB$ use Pythagorean theorem,
$
A{C^2} = A{B^2} + B{C^2} \\
{\left( {1 + AB} \right)^2} = A{B^2} + {\left( 5 \right)^2} \\
\\
$……..(1)
Now, apply the formula of ${\left( {a + b} \right)^2}$ to find the value of $AB$.
$
\left( {1 + A{B^2} + 2AB} \right) = A{B^2} + 25 \\
\\
$
Cancel out the term $A{B^2}$ from both the sides,
$
2AB = 24 \\
AB = 12{\text{cm}} \\
$
Now, $AC = 1 + AB$ ……(2)
Substitute the value of $AB$ in equation (2),
$
AC = 1 + 12 \\
= 13\;{\text{cm}} \\
$
Here, the value of height $AC = 12\,{\text{cm}}$ and the value of base $BC = 5\;{\text{cm}}$.
Now,
\[
\sin = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} \\
= \dfrac{{12}}{{13}} \\
\]
And,
$
\operatorname{Cos} = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} \\
= \dfrac{5}{{13}} \\
$
Thus, substitute the value in the given expression,
$
\dfrac{{1 + \sin C}}{{1 + \cos C}} = \dfrac{{1 + \dfrac{{12}}{{13}}}}{{1 + \dfrac{5}{{13}}}} \\
= \dfrac{{\dfrac{{13 + 12}}{{13}}}}{{\dfrac{{13 + 5}}{{13}}}} \\
= \dfrac{{25}}{{13}} \times \dfrac{{13}}{{18}} \\
= \dfrac{{25}}{{18}} \\
$
Hence, from the above calculation it is concluded that the value of $\dfrac{{1 + \sin C}}{{1 + \cos C}}$ is $\dfrac{{25}}{{18}}$.
Note:Always find the third side by Using Pythagorean theorem in a right-angle triangle and then find the trigonometric ratios. Make sure about the correct formulas of sine and cosine and avoid silly mistakes.
Complete step by step solution:
Trigonometry ratios are the ratios between edges of the right-angle triangle. There are six trigonometric ratios sin, cos, tan, cosec, sec, cot. Sine function defined as the ratio of perpendicular to the hypotenuse. Cos function is defined as the ratio of base to the hypotenuse. Tan function is defined as the ratio of perpendicular to the base. The reciprocal of these functions defines cosec, sec and cot respectively.
According to the question it is given that in triangle $ABC$,
$BC = 5\;{\text{cm}},\;AC - AB = 1$
To find the value of $AB$ use Pythagorean theorem,
$
A{C^2} = A{B^2} + B{C^2} \\
{\left( {1 + AB} \right)^2} = A{B^2} + {\left( 5 \right)^2} \\
\\
$……..(1)
Now, apply the formula of ${\left( {a + b} \right)^2}$ to find the value of $AB$.
$
\left( {1 + A{B^2} + 2AB} \right) = A{B^2} + 25 \\
\\
$
Cancel out the term $A{B^2}$ from both the sides,
$
2AB = 24 \\
AB = 12{\text{cm}} \\
$
Now, $AC = 1 + AB$ ……(2)
Substitute the value of $AB$ in equation (2),
$
AC = 1 + 12 \\
= 13\;{\text{cm}} \\
$
Here, the value of height $AC = 12\,{\text{cm}}$ and the value of base $BC = 5\;{\text{cm}}$.
Now,
\[
\sin = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} \\
= \dfrac{{12}}{{13}} \\
\]
And,
$
\operatorname{Cos} = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} \\
= \dfrac{5}{{13}} \\
$
Thus, substitute the value in the given expression,
$
\dfrac{{1 + \sin C}}{{1 + \cos C}} = \dfrac{{1 + \dfrac{{12}}{{13}}}}{{1 + \dfrac{5}{{13}}}} \\
= \dfrac{{\dfrac{{13 + 12}}{{13}}}}{{\dfrac{{13 + 5}}{{13}}}} \\
= \dfrac{{25}}{{13}} \times \dfrac{{13}}{{18}} \\
= \dfrac{{25}}{{18}} \\
$
Hence, from the above calculation it is concluded that the value of $\dfrac{{1 + \sin C}}{{1 + \cos C}}$ is $\dfrac{{25}}{{18}}$.
Note:Always find the third side by Using Pythagorean theorem in a right-angle triangle and then find the trigonometric ratios. Make sure about the correct formulas of sine and cosine and avoid silly mistakes.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

