
$\int\limits_0^\pi {\left[ {\cot x} \right]} dx$where [.] denotes the greatest integer function, is equal to
$
{\text{A}}{\text{. }}\dfrac{\pi }{2} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. - 1}} \\
{\text{D}}{\text{. - }}\dfrac{\pi }{2} \\
$
Answer
232.8k+ views
Hint: To solve this question we have to understand property of greater integer function like: $
\left[ x \right] + \left[ { - x} \right] = 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
Now we have to consider cot function on which x it gives integer value and on which other value and by doing this we can proceed further in the question.
Complete step-by-step answer:
In order to use the property,
$
\left[ x \right] + \left[ { - x} \right] = - 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
We need to apply the below property of integers first-
$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $
This gives us:
$
\int\limits_0^\pi {\left[ {\cot x} \right]dx} = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} \\
\int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
This shows:
$
I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} \\
I = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
Adding the two integrals-
$
2I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} + \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
$
Now in the interval $0 - \pi $ cot(x) is not an integer so, from the property of greatest integer function we get,
$
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
2I = \int_0^\pi { - 1.dx} \\
2I = - \left( {\pi - 0} \right) \\
2I = - \pi \\
I = \dfrac{{ - \pi }}{2} \\
$
The correct option is- D.
Note: Whenever we get this type of question the key concept of solving is we have to care more about negative values because on taking greater integers some students confuse. And we have to remember properties of definite integration like $\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $.
\left[ x \right] + \left[ { - x} \right] = 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
Now we have to consider cot function on which x it gives integer value and on which other value and by doing this we can proceed further in the question.
Complete step-by-step answer:
In order to use the property,
$
\left[ x \right] + \left[ { - x} \right] = - 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
We need to apply the below property of integers first-
$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $
This gives us:
$
\int\limits_0^\pi {\left[ {\cot x} \right]dx} = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} \\
\int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
This shows:
$
I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} \\
I = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
Adding the two integrals-
$
2I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} + \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
$
Now in the interval $0 - \pi $ cot(x) is not an integer so, from the property of greatest integer function we get,
$
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
2I = \int_0^\pi { - 1.dx} \\
2I = - \left( {\pi - 0} \right) \\
2I = - \pi \\
I = \dfrac{{ - \pi }}{2} \\
$
The correct option is- D.
Note: Whenever we get this type of question the key concept of solving is we have to care more about negative values because on taking greater integers some students confuse. And we have to remember properties of definite integration like $\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

