
Let A and B be two sets containing 2 elements and 4 elements respectively. The number of subsets of A×B having 3 or more elements is:
$
{\text{A}}{\text{. 200}} \\
{\text{B}}{\text{. 219}} \\
{\text{C}}{\text{. 211}} \\
{\text{D}}{\text{. 256}} \\
$
Answer
131.7k+ views
Hint: In order to find the number of subsets A × B has, we find out how many possible subsets the number of elements in A×B can form. From the total number of subsets we subtract the number of subsets formed by zero, one and two elements to determine the answer.
Complete step-by-step answer:
Given Data,
A has 2 elements
B has 4 elements
According to the given condition, let us consider the sets A and B containing 2 and 4 elements respectively as follows:
Let A = {x, y}
B = {p, q, r, s}
By A×B the question means forming a new set of ordered pairs which has all the elements containing in both A and B respectively.
The number of elements in it is given by the product of individual elements in A and B.
Total number of elements in A×B = 2 × 4 = 8.
The number of subsets formed by a given set A×B is given by${{\text{2}}^{\text{n}}}$, where n is the number of elements in the set.
The number of subsets in A×B = ${{\text{2}}^8}$= 256
Now the number of ways we get favorable outcomes from a set of ‘n’ total outcomes is found by calculating combination which is given by the formula,
${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right)!{\text{r!}}}}$
Now the number of subsets having 3 or more elements = Total number of possible subsets – (number of subsets having zero elements + one element + two elements)
Number of subsets having zero elements is given by = ${}^8{{\text{C}}_{\text{0}}} = \dfrac{{{\text{8!}}}}{{\left( {{\text{8 - 0}}} \right)!0{\text{!}}}} = 1$
Number of subsets having one elements is given by = ${}^8{{\text{C}}_1} = \dfrac{{{\text{8!}}}}{{\left( {{\text{8 - 1}}} \right)!1{\text{!}}}} = 8$
Number of subsets having two elements is given by = ${}^8{{\text{C}}_2} = \dfrac{{{\text{8!}}}}{{\left( {{\text{8 - 2}}} \right)!2{\text{!}}}} = 28$
Therefore the number of subsets having 3 or more elements = 256 – 1 – 8 – 28 = 219.
Option B is the correct answer.
Note: In order to solve this type of problems the key is to know the concept of subsets and the definition of A×B for two sets. Knowing these concepts help us determine the total number of elements we are dealing with, then we can start counting the possible outcomes. The formula of combination and the way of computing the possible outcomes should be done carefully. The factorial of a number n, represented as n! is given by n! = n (n-1)(n-2) …… (n - (n-1)).
Complete step-by-step answer:
Given Data,
A has 2 elements
B has 4 elements
According to the given condition, let us consider the sets A and B containing 2 and 4 elements respectively as follows:
Let A = {x, y}
B = {p, q, r, s}
By A×B the question means forming a new set of ordered pairs which has all the elements containing in both A and B respectively.
The number of elements in it is given by the product of individual elements in A and B.
Total number of elements in A×B = 2 × 4 = 8.
The number of subsets formed by a given set A×B is given by${{\text{2}}^{\text{n}}}$, where n is the number of elements in the set.
The number of subsets in A×B = ${{\text{2}}^8}$= 256
Now the number of ways we get favorable outcomes from a set of ‘n’ total outcomes is found by calculating combination which is given by the formula,
${}^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right)!{\text{r!}}}}$
Now the number of subsets having 3 or more elements = Total number of possible subsets – (number of subsets having zero elements + one element + two elements)
Number of subsets having zero elements is given by = ${}^8{{\text{C}}_{\text{0}}} = \dfrac{{{\text{8!}}}}{{\left( {{\text{8 - 0}}} \right)!0{\text{!}}}} = 1$
Number of subsets having one elements is given by = ${}^8{{\text{C}}_1} = \dfrac{{{\text{8!}}}}{{\left( {{\text{8 - 1}}} \right)!1{\text{!}}}} = 8$
Number of subsets having two elements is given by = ${}^8{{\text{C}}_2} = \dfrac{{{\text{8!}}}}{{\left( {{\text{8 - 2}}} \right)!2{\text{!}}}} = 28$
Therefore the number of subsets having 3 or more elements = 256 – 1 – 8 – 28 = 219.
Option B is the correct answer.
Note: In order to solve this type of problems the key is to know the concept of subsets and the definition of A×B for two sets. Knowing these concepts help us determine the total number of elements we are dealing with, then we can start counting the possible outcomes. The formula of combination and the way of computing the possible outcomes should be done carefully. The factorial of a number n, represented as n! is given by n! = n (n-1)(n-2) …… (n - (n-1)).
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

Difference Between Mutually Exclusive and Independent Events

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
