
Let \[a,b\] and $c$ be three real numbers satisfying
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]......\left( E \right)\]
Let $b = 6$, with $a$ and $c$ satisfying $\left( E \right).$ If $\alpha $ and $\beta $ are the roots of the quadratic equation $a{x^2} + bx + c = 0$, then $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $ is:
(A) 6
(B) 7
(C) $\dfrac{6}{7}$
(D) $\infty $
Answer
232.5k+ views
Hint: The multiplication of two matrices is possible if the no. of columns in matrix A is equal to the no. of rows in matrix B. Here we multiplied the two given matrix and form the equations by comparing the values of both sides.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since, $b = 6$, so the equations become
$
a + 8\left( 6 \right) + 7c = 0 \Rightarrow a + 7c = - 48....(1) \\
9a + 2\left( 6 \right) + 3c = 0 \Rightarrow 9a + 3c = - 12....(2) \\
a + 6 + c = 0 \Rightarrow a + c = - 6....(3) \\
$
On subtracting equation (3) from (1), we get
$a + 7c - \left( {a + c} \right) = - 48 - \left( { - 6} \right)$
$
\Rightarrow a + 7c - a - c = - 48 + 6 \\
\Rightarrow 6c = - 42 \\
\Rightarrow c = - 7 \\
$
Substitute the value of $c$ in equation (3), we get
$
a + \left( { - 7} \right) = - 6 \\
\Rightarrow a - 7 = - 6 \\
\Rightarrow a = - 6 + 7 \\
\Rightarrow a = 1 \\
$
So, we have $a = 1,b = 6,c = - 7$
Given quadratic equation is $a{x^2} + bx + c = 0$. After putting the values of \[a,b\] and $c$, it becomes ${x^2} + 6x - 7 = 0$.
Since, $\alpha $ and $\beta $ are the roots of this equation, So
Sum of roots, $\alpha + \beta = $$\dfrac{{ - b}}{a} = \dfrac{{ - 6}}{1} = - 6$
Multiplication of roots, $\alpha \beta = \dfrac{c}{a} = \dfrac{{ - 7}}{1} = - 7$
Now, $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{ - 6}}{{ - 7}}} \right)}^n}} $
$ = \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{6}{7}} \right)}^n}} $
On expand it, we get-
$ = {\left( {\dfrac{6}{7}} \right)^0} + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
$ = 1 + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
This is an infinite Geometric Progression, whose sum of infinite terms is given by
${S_\infty } = \dfrac{a}{{1 - r}}$
Where $a$ is the first term of G.P. and $r$ is the common ratio of G.P.
Here we have, $a = 1$and $r = \dfrac{6}{7}$
$\therefore $ $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $$ = \dfrac{1}{{1 - \dfrac{6}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{{7 - 6}}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{1}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = 7$
Hence, option (B) is the correct answer.
Note: If $\alpha $ and $\beta $ are the roots of the quadratic equation $a{x^2} + bx + c = 0$, then sum of roots, $\alpha + \beta = \dfrac{{ - b}}{a}$ and multiplication of roots, $\alpha \beta = \dfrac{c}{a}$. Also, the sum of infinite terms of an G.P. is ${S_\infty } = \dfrac{a}{{1 - r}}$.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since, $b = 6$, so the equations become
$
a + 8\left( 6 \right) + 7c = 0 \Rightarrow a + 7c = - 48....(1) \\
9a + 2\left( 6 \right) + 3c = 0 \Rightarrow 9a + 3c = - 12....(2) \\
a + 6 + c = 0 \Rightarrow a + c = - 6....(3) \\
$
On subtracting equation (3) from (1), we get
$a + 7c - \left( {a + c} \right) = - 48 - \left( { - 6} \right)$
$
\Rightarrow a + 7c - a - c = - 48 + 6 \\
\Rightarrow 6c = - 42 \\
\Rightarrow c = - 7 \\
$
Substitute the value of $c$ in equation (3), we get
$
a + \left( { - 7} \right) = - 6 \\
\Rightarrow a - 7 = - 6 \\
\Rightarrow a = - 6 + 7 \\
\Rightarrow a = 1 \\
$
So, we have $a = 1,b = 6,c = - 7$
Given quadratic equation is $a{x^2} + bx + c = 0$. After putting the values of \[a,b\] and $c$, it becomes ${x^2} + 6x - 7 = 0$.
Since, $\alpha $ and $\beta $ are the roots of this equation, So
Sum of roots, $\alpha + \beta = $$\dfrac{{ - b}}{a} = \dfrac{{ - 6}}{1} = - 6$
Multiplication of roots, $\alpha \beta = \dfrac{c}{a} = \dfrac{{ - 7}}{1} = - 7$
Now, $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{ - 6}}{{ - 7}}} \right)}^n}} $
$ = \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{6}{7}} \right)}^n}} $
On expand it, we get-
$ = {\left( {\dfrac{6}{7}} \right)^0} + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
$ = 1 + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
This is an infinite Geometric Progression, whose sum of infinite terms is given by
${S_\infty } = \dfrac{a}{{1 - r}}$
Where $a$ is the first term of G.P. and $r$ is the common ratio of G.P.
Here we have, $a = 1$and $r = \dfrac{6}{7}$
$\therefore $ $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $$ = \dfrac{1}{{1 - \dfrac{6}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{{7 - 6}}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{1}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = 7$
Hence, option (B) is the correct answer.
Note: If $\alpha $ and $\beta $ are the roots of the quadratic equation $a{x^2} + bx + c = 0$, then sum of roots, $\alpha + \beta = \dfrac{{ - b}}{a}$ and multiplication of roots, $\alpha \beta = \dfrac{c}{a}$. Also, the sum of infinite terms of an G.P. is ${S_\infty } = \dfrac{a}{{1 - r}}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

