Answer
Verified
99.9k+ views
Hint: Two non collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $are given. We only need to put the position vector equation and then apply the formula for maximum value and some trigonometric function for M. After that we will get the unit vector by applying the formula of the unit vector and hence get our answer.
Complete step by step solution:
We are given some useful information in question let us write them first before starting the question:
So, we are given two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle i.e. they are not in a line and have an angle which is acute.
At time t the position vector is $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . Here $\mathop {OP}\limits^ \to $ is the length and maximum length of vector $\mathop {OP}\limits^ \to $ is M and $\mathop u\limits^ \wedge $ is the unit vector along vector$\mathop {OP}\limits^ \to $.
$\mathop u\limits^ \wedge $ is the unit vector along vector $\mathop {OP}\limits^ \to $ along the maximum length
Now at the position of $\mathop {OP}\limits^ \to $ vector is $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint ……… (1)
For getting the maximum value of (1) we will perform formula
For maximum value R=$\sqrt {{a^2} + {b^2} + 2ab} $
Now, $\mathop {OP}\limits^ \to $ can be written as, = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $because square and root are opposite to each other and hence no change in our original equation.
Using the above formula for maximum value in (1), $\mathop {OP}\limits^ \to $ = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $
On further we can write it as$\mathop {OP}\limits^ \to $ =$\sqrt {{{\left( {\mathop {a\cos t}\limits^ \wedge } \right)}^2} + {{\left( {\mathop b\limits^ \wedge \sin t} \right)}^2} + 2\mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin t\cos t} $
$ \Rightarrow $ $\mathop {OP}\limits^ \to $ =$\sqrt {{{\cos }^2}t + {{\sin }^2}t + \mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin 2t} $
This gives $\left| {\mathop {OP}\limits^ \to } \right|$ =$\sqrt {1 + \sin 2t \cdot \mathop a\limits^ \wedge \mathop b\limits^ \wedge } $
$\therefore $ 2sintcost = sin2t
And ${\cos ^2}a + {\sin ^2}a$ =1
If we want the $\mathop {OP}\limits^ \to $vector to be maximum then sin2t should be maximum and the maximum value for sine function is 1.
Hence, sin2t is maximum at 1 or $\dfrac{\pi }{2}$
Then 2t=$\dfrac{\pi }{2}$ or t=$\dfrac{\pi }{4}$
Using all these we get final value M=${\left( {1 + \mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$ this will be farthest from the origin at t=$\dfrac{\pi }{4}$…… (2)
Putting value of t in equation (1) for the value of $\mathop {OP}\limits^ \to $
This equal to $\mathop {OP}\limits^ \to $ =$\dfrac{{\mathop a\limits^ \wedge }}{{\sqrt 2 }} + \dfrac{{\mathop b\limits^ \wedge }}{{\sqrt 2 }}$ (maximum length)…….. (3)
Taking out value of $\sqrt 2 $ outside we get the unit vector of $\mathop {OP}\limits^ \to $
$\mathop {OP}\limits^ \to $ =$\dfrac{1}{{\sqrt 2 }}\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\sqrt 2 }}} \right|}}$ or this is a unit vector $\mathop u\limits^ \wedge $ ……. (4)
Cancelling $\sqrt 2 $ and solving further equation (4) we get unit vector $\mathop u\limits^ \wedge $ =$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ ………. (5)
Combining the result of (2) and (5) we get $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Option A is the correct answer.
Note: Points to take caution:
While solving for the maximum value of M the trigonometric formula is required and also the formula for maximum value. It is advised to students to put correct value and indicate equation no so that there will be a less chance of error. While calculating the unit vector also the same thing needed.
Complete step by step solution:
We are given some useful information in question let us write them first before starting the question:
So, we are given two non-collinear unit vectors $\mathop a\limits^ \wedge $ and $\mathop b\limits^ \wedge $ and b form an acute angle i.e. they are not in a line and have an angle which is acute.
At time t the position vector is $\mathop {OP}\limits^ \to $(where O is the origin) is given by $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint . Here $\mathop {OP}\limits^ \to $ is the length and maximum length of vector $\mathop {OP}\limits^ \to $ is M and $\mathop u\limits^ \wedge $ is the unit vector along vector$\mathop {OP}\limits^ \to $.
$\mathop u\limits^ \wedge $ is the unit vector along vector $\mathop {OP}\limits^ \to $ along the maximum length
Now at the position of $\mathop {OP}\limits^ \to $ vector is $\mathop a\limits^ \wedge $cost +$\mathop b\limits^ \wedge $sint ……… (1)
For getting the maximum value of (1) we will perform formula
For maximum value R=$\sqrt {{a^2} + {b^2} + 2ab} $
Now, $\mathop {OP}\limits^ \to $ can be written as, = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $because square and root are opposite to each other and hence no change in our original equation.
Using the above formula for maximum value in (1), $\mathop {OP}\limits^ \to $ = $\sqrt {{{\left( {\mathop a\limits^ \wedge \cos t + \mathop b\limits^ \wedge \sin t} \right)}^2}} $
On further we can write it as$\mathop {OP}\limits^ \to $ =$\sqrt {{{\left( {\mathop {a\cos t}\limits^ \wedge } \right)}^2} + {{\left( {\mathop b\limits^ \wedge \sin t} \right)}^2} + 2\mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin t\cos t} $
$ \Rightarrow $ $\mathop {OP}\limits^ \to $ =$\sqrt {{{\cos }^2}t + {{\sin }^2}t + \mathop a\limits^ \wedge \mathop b\limits^ \wedge \sin 2t} $
This gives $\left| {\mathop {OP}\limits^ \to } \right|$ =$\sqrt {1 + \sin 2t \cdot \mathop a\limits^ \wedge \mathop b\limits^ \wedge } $
$\therefore $ 2sintcost = sin2t
And ${\cos ^2}a + {\sin ^2}a$ =1
If we want the $\mathop {OP}\limits^ \to $vector to be maximum then sin2t should be maximum and the maximum value for sine function is 1.
Hence, sin2t is maximum at 1 or $\dfrac{\pi }{2}$
Then 2t=$\dfrac{\pi }{2}$ or t=$\dfrac{\pi }{4}$
Using all these we get final value M=${\left( {1 + \mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$ this will be farthest from the origin at t=$\dfrac{\pi }{4}$…… (2)
Putting value of t in equation (1) for the value of $\mathop {OP}\limits^ \to $
This equal to $\mathop {OP}\limits^ \to $ =$\dfrac{{\mathop a\limits^ \wedge }}{{\sqrt 2 }} + \dfrac{{\mathop b\limits^ \wedge }}{{\sqrt 2 }}$ (maximum length)…….. (3)
Taking out value of $\sqrt 2 $ outside we get the unit vector of $\mathop {OP}\limits^ \to $
$\mathop {OP}\limits^ \to $ =$\dfrac{1}{{\sqrt 2 }}\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\sqrt 2 }}} \right|}}$ or this is a unit vector $\mathop u\limits^ \wedge $ ……. (4)
Cancelling $\sqrt 2 $ and solving further equation (4) we get unit vector $\mathop u\limits^ \wedge $ =$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ ………. (5)
Combining the result of (2) and (5) we get $\mathop u\limits^ \wedge $=$\dfrac{{\mathop a\limits^ \wedge + \mathop b\limits^ \wedge }}{{\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge } \right|}}$ and M=${\left( {1 + \mathop a\limits^ \wedge \mathop b\limits^ \wedge } \right)^{\dfrac{1}{2}}}$
Option A is the correct answer.
Note: Points to take caution:
While solving for the maximum value of M the trigonometric formula is required and also the formula for maximum value. It is advised to students to put correct value and indicate equation no so that there will be a less chance of error. While calculating the unit vector also the same thing needed.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main