Minimum area of the circle which touches the parabolas $y={{x}^{2}}+1$ and ${{y}^{2}}=x-1$ is
(a) \[\dfrac{9\pi }{16}\] sq. units
(b) \[\dfrac{9\pi }{32}\] sq. units
(c) \[\dfrac{9\pi }{8}\] sq. units
(d) \[\dfrac{9\pi }{4}\] sq. units
Answer
Verified
118.2k+ views
Hint: Observe that the two parabolas are symmetric with respect to the line $y=x$ and thus, the tangents will be parallel to the line $y=x$. Use this fact to write the slope of tangents at points at which the circle touches the parabola. Equate the slope of these tangents to 1 and solve the equations to find the coordinates of point of intersection of circle and parabola. Calculate the diameter of the circle using distance formula and then calculate the area of the circle.
Complete step-by-step solution -
We have two parabolas $y={{x}^{2}}+1$ and ${{y}^{2}}=x-1$.
Let’s assume that the equation of our required circle is \[{{(x-h)}^{2}}+{{(y-k)}^{2}}={{a}^{2}}\].
Consider the parabola \[y={{x}^{2}}+1\].
If we replace y by x and x by y in the above equation of parabola, we get \[x={{y}^{2}}+1\] which is the equation of our second parabola.
So, the two parabolas are symmetric with respect to the line \[y=x\].
Let’s assume that our circle touches the parabola \[x={{y}^{2}}+1\] at point A and the parabola \[y={{x}^{2}}+1\] at point B.
So, the tangent at point A and B is parallel to the line. Thus, their slopes are the same, i.e., 1.
We will now find the slope of two lines.
The slope of any line is \[\dfrac{dy}{dx}\].
Thus, the slope of tangent at A is \[\dfrac{dy}{dx}=2x\], as \[y={{x}^{2}}+1\]. As the slope of the tangent is 1, we have $2x=1$.
Rearranging the terms of the above equation, we have $x=\dfrac{1}{2}$.
Substituting the above value of x in the equation \[y={{x}^{2}}+1\], we get \[y={{\left( \dfrac{1}{2} \right)}^{2}}+1=\dfrac{5}{4}\].
Thus, the coordinates of A are \[\left( \dfrac{1}{2},\dfrac{5}{4} \right)\].
Similarly, the slope of tangent at B is $\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{x-1}}$, as \[{{y}^{2}}=x-1\Rightarrow y=\sqrt{x-1}\].
As the slope of the tangent is 1, we have $\dfrac{1}{2\sqrt{x-1}}=1$.
Simplifying the above equation, we have $2\sqrt{x-1}=1\Rightarrow \sqrt{x-1}=\dfrac{1}{2}$.
$\Rightarrow x-1={{\left( \dfrac{1}{2} \right)}^{2}}=\dfrac{1}{4}$
Thus, we have $x=1+\dfrac{1}{4}=\dfrac{5}{4}$.
Substituting the value of x in the equation \[y=\sqrt{x-1}\], we get \[y=\sqrt{\dfrac{5}{4}-1}=\pm \dfrac{1}{2}\].
But as B lies in the first quadrant, we reject \[y=-\dfrac{1}{2}\].
Thus the coordinates of B are \[\left( \dfrac{5}{4},\dfrac{1}{2} \right)\].
Now, we know AB forms the diameter of the circle.
We know that the distance between two points with coordinates \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\].
Substituting \[{{x}_{1}}=\dfrac{1}{2},{{y}_{1}}=\dfrac{5}{4},{{x}_{2}}=\dfrac{5}{4},{{y}_{2}}=\dfrac{1}{2}\], we get length of AB as \[\sqrt{{{(\dfrac{1}{2}-\dfrac{5}{4})}^{2}}+{{(\dfrac{5}{4}-\dfrac{1}{2})}^{2}}}=\sqrt{{{\left( \dfrac{-3}{4} \right)}^{2}}+{{\left( \dfrac{3}{4} \right)}^{2}}}=\sqrt{\dfrac{9}{16}+\dfrac{9}{16}}=\sqrt{\dfrac{9}{8}=}\dfrac{3}{4}\sqrt{2}\] units.
We know the area of the circle with diameter d is \[\pi \dfrac{{{d}^{2}}}{4}\] sq. units.
Substituting \[d=\dfrac{3}{4}\sqrt{2}\], the required area is \[=\dfrac{\pi }{4}{{\left( \dfrac{3\sqrt{2}}{4} \right)}^{2}}=\dfrac{18\pi }{64}=\dfrac{9\pi }{32}\] sq. units.
Hence, the area of the circle is \[\dfrac{9\pi }{32}\] sq. units, which is option (b).
Note: We can also use the formula of reflection of a point with respect to a line to check that the two parabolas are symmetric with respect to the line by reflecting the focus of one parabola along the line to get the focus of another parabola. If we are calculating the area of circle using the diameter of circle, use the formula $\pi \dfrac{{{d}^{2}}}{4}$ and if we are calculating the area of circle using radius of circle, use the formula $\pi {{r}^{2}}$.
Complete step-by-step solution -
We have two parabolas $y={{x}^{2}}+1$ and ${{y}^{2}}=x-1$.
Let’s assume that the equation of our required circle is \[{{(x-h)}^{2}}+{{(y-k)}^{2}}={{a}^{2}}\].
Consider the parabola \[y={{x}^{2}}+1\].
If we replace y by x and x by y in the above equation of parabola, we get \[x={{y}^{2}}+1\] which is the equation of our second parabola.
So, the two parabolas are symmetric with respect to the line \[y=x\].
Let’s assume that our circle touches the parabola \[x={{y}^{2}}+1\] at point A and the parabola \[y={{x}^{2}}+1\] at point B.
So, the tangent at point A and B is parallel to the line. Thus, their slopes are the same, i.e., 1.
We will now find the slope of two lines.
The slope of any line is \[\dfrac{dy}{dx}\].
Thus, the slope of tangent at A is \[\dfrac{dy}{dx}=2x\], as \[y={{x}^{2}}+1\]. As the slope of the tangent is 1, we have $2x=1$.
Rearranging the terms of the above equation, we have $x=\dfrac{1}{2}$.
Substituting the above value of x in the equation \[y={{x}^{2}}+1\], we get \[y={{\left( \dfrac{1}{2} \right)}^{2}}+1=\dfrac{5}{4}\].
Thus, the coordinates of A are \[\left( \dfrac{1}{2},\dfrac{5}{4} \right)\].
Similarly, the slope of tangent at B is $\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{x-1}}$, as \[{{y}^{2}}=x-1\Rightarrow y=\sqrt{x-1}\].
As the slope of the tangent is 1, we have $\dfrac{1}{2\sqrt{x-1}}=1$.
Simplifying the above equation, we have $2\sqrt{x-1}=1\Rightarrow \sqrt{x-1}=\dfrac{1}{2}$.
$\Rightarrow x-1={{\left( \dfrac{1}{2} \right)}^{2}}=\dfrac{1}{4}$
Thus, we have $x=1+\dfrac{1}{4}=\dfrac{5}{4}$.
Substituting the value of x in the equation \[y=\sqrt{x-1}\], we get \[y=\sqrt{\dfrac{5}{4}-1}=\pm \dfrac{1}{2}\].
But as B lies in the first quadrant, we reject \[y=-\dfrac{1}{2}\].
Thus the coordinates of B are \[\left( \dfrac{5}{4},\dfrac{1}{2} \right)\].
Now, we know AB forms the diameter of the circle.
We know that the distance between two points with coordinates \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is \[\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\].
Substituting \[{{x}_{1}}=\dfrac{1}{2},{{y}_{1}}=\dfrac{5}{4},{{x}_{2}}=\dfrac{5}{4},{{y}_{2}}=\dfrac{1}{2}\], we get length of AB as \[\sqrt{{{(\dfrac{1}{2}-\dfrac{5}{4})}^{2}}+{{(\dfrac{5}{4}-\dfrac{1}{2})}^{2}}}=\sqrt{{{\left( \dfrac{-3}{4} \right)}^{2}}+{{\left( \dfrac{3}{4} \right)}^{2}}}=\sqrt{\dfrac{9}{16}+\dfrac{9}{16}}=\sqrt{\dfrac{9}{8}=}\dfrac{3}{4}\sqrt{2}\] units.
We know the area of the circle with diameter d is \[\pi \dfrac{{{d}^{2}}}{4}\] sq. units.
Substituting \[d=\dfrac{3}{4}\sqrt{2}\], the required area is \[=\dfrac{\pi }{4}{{\left( \dfrac{3\sqrt{2}}{4} \right)}^{2}}=\dfrac{18\pi }{64}=\dfrac{9\pi }{32}\] sq. units.
Hence, the area of the circle is \[\dfrac{9\pi }{32}\] sq. units, which is option (b).
Note: We can also use the formula of reflection of a point with respect to a line to check that the two parabolas are symmetric with respect to the line by reflecting the focus of one parabola along the line to get the focus of another parabola. If we are calculating the area of circle using the diameter of circle, use the formula $\pi \dfrac{{{d}^{2}}}{4}$ and if we are calculating the area of circle using radius of circle, use the formula $\pi {{r}^{2}}$.
Recently Updated Pages
Draw the structure of a butanone molecule class 10 chemistry JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Difference Between Vapor and Gas: JEE Main 2024
Area of an Octagon Formula - Explanation, and FAQs
Difference Between Solute and Solvent: JEE Main 2024
Absolute Pressure Formula - Explanation, and FAQs
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main Chemistry Exam Pattern 2025
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2025 Maths Online - FREE Mock Test Series
Other Pages
NCERT Solutions for Class 11 Maths In Hindi Chapter 16 Probability
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations Ex 6.4
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy