Answer
Verified
111.6k+ views
Hint: n- factor is also known as valence factor and for neutral medium it can be defined as the change in oxidation state of an atom in a compound per molecule. $KMn{{O}_{4}}$is neither an acid nor a base, it is actually neutral. It is a purplish black solid which when dissolved in water gives intensely pink or purple solutions.
Step by step solution:
- $KMn{{O}_{4}}$is a salt because it is produced from KOH which is a strong base and $MnO_{4}^{-}$ion are produced from $HMn{{O}_{4}}$, which is an acid.
- The reaction in neutral medium is:
\[MnO_{4}^{-}+4{{H}^{+}}+3{{e}^{-}}\to Mn{{O}_{2}}+2{{H}_{2}}O\]
- We can calculate the oxidation state of $MnO_{4}^{-}$. Here, the charge present on oxygen is -2 and the overall charge is -1.So,
\[\begin{align}
& x+\left( 4\times -2 \right)=-1 \\
& x+\left( -8 \right)=-1 \\
& x-8=-1 \\
& x=+7 \\
\end{align}\]
-Now we will calculate the oxidation state of $Mn{{O}_{2}}$. Here, the charge present on oxygen is -2 and the overall charge is 0. So,
\[\begin{align}
& x+\left( 2\times -2 \right)=0 \\
& x+\left( -4 \right)=0 \\
& x=+4 \\
\end{align}\]
- We can see from the reaction that, In neutral medium, $MnO_{4}^{-}$ is reduced to $Mn{{O}_{2}}$.Here the oxidation state of Mn changes from+7 to +4. For which 3 electrons are taken, hence we can say that the n factor here is 3.
- Therefore we can conclude that the option(d)that is 3 is correct.
Additional information:
- We can also find the n factor for acid, here the n factor in case of acid can be defined as the number of ions replaced by one mole of acid in a reaction.
- In case of base, n factor can be defined as the number of ions replaced by one mole of base in a reaction.
Note:
n-factor value can be further used to determine the equivalent weight of a compound. We can see that n-factor methods can be used to solve complicated reactions including redox reactions.
Step by step solution:
- $KMn{{O}_{4}}$is a salt because it is produced from KOH which is a strong base and $MnO_{4}^{-}$ion are produced from $HMn{{O}_{4}}$, which is an acid.
- The reaction in neutral medium is:
\[MnO_{4}^{-}+4{{H}^{+}}+3{{e}^{-}}\to Mn{{O}_{2}}+2{{H}_{2}}O\]
- We can calculate the oxidation state of $MnO_{4}^{-}$. Here, the charge present on oxygen is -2 and the overall charge is -1.So,
\[\begin{align}
& x+\left( 4\times -2 \right)=-1 \\
& x+\left( -8 \right)=-1 \\
& x-8=-1 \\
& x=+7 \\
\end{align}\]
-Now we will calculate the oxidation state of $Mn{{O}_{2}}$. Here, the charge present on oxygen is -2 and the overall charge is 0. So,
\[\begin{align}
& x+\left( 2\times -2 \right)=0 \\
& x+\left( -4 \right)=0 \\
& x=+4 \\
\end{align}\]
- We can see from the reaction that, In neutral medium, $MnO_{4}^{-}$ is reduced to $Mn{{O}_{2}}$.Here the oxidation state of Mn changes from+7 to +4. For which 3 electrons are taken, hence we can say that the n factor here is 3.
- Therefore we can conclude that the option(d)that is 3 is correct.
Additional information:
- We can also find the n factor for acid, here the n factor in case of acid can be defined as the number of ions replaced by one mole of acid in a reaction.
- In case of base, n factor can be defined as the number of ions replaced by one mole of base in a reaction.
Note:
n-factor value can be further used to determine the equivalent weight of a compound. We can see that n-factor methods can be used to solve complicated reactions including redox reactions.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6
Thermodynamics Class 11 Notes: CBSE Chapter 5