What is the percentage of pyridine \[{\text{(}}{{\text{C}}_{\text{5}}}{{\text{H}}_{\text{5}}}{\text{N)}}\] that forms pyridinium ion \[{\text{(}}{{\text{C}}_{\text{5}}}{{\text{H}}_{\text{5}}}{{\text{N}}^{\text{ + }}}{\text{H)}}\] in a 0.10 M aqueous pyridine solution ( \[{{\text{K}}_{\text{b}}}\] for \[{{\text{C}}_{\text{5}}}{{\text{H}}_{\text{5}}}{\text{N}}\]\[ = 1.7 \times {10^{ - 9}}\])?
(A) 0.77%
(B) 1.6%
(C) 0.0060%
(D) 0.013%
Answer
Verified
118.8k+ views
Hint: The law of dilution gives us a relation between dissociation constant and the degree of dissociation. This relation can be explained as: the degree of dissociation of a weak electrolyte (\[{{\alpha }}\]) is directly proportional to dilution constant \[{{\text{K}}_b}\], and it is inversely proportional to the concentration \[{{\text{C}}_{\text{0}}}\].
Complete step by step solution:
For the reaction,
Dilution constant can be written as:
\[{K_b} = \dfrac{{\left[ {{A^ + }} \right]\left[ {{B^ - }} \right]}}{{\left[ {AB} \right]}} = \dfrac{{\left( {\alpha {C_0}} \right)\left( {\alpha {C_0}} \right)}}{{\left( {1 - \alpha } \right){C_0}}} = \dfrac{{{\alpha ^2}}}{{1 - \alpha }} \times {C_0}\]
Where \[{{\alpha }}\]is the degree of dissociation of a weak electrolyte. And \[{{\text{C}}_{\text{0}}}\] is the concentration.
For weak electrolyte, \[\alpha < < 0\] so \[\left( {1 - \alpha } \right)\] can be neglected and the resulting equation is:
So, \[\alpha = \sqrt {\dfrac{{{K_b}}}{{{C_0}}}} \]
So, for pyridine on dilution with water results in pyridinium ion. In question, we are given that molarity of pyridine solution is 0.10M and \[{{\text{K}}_{\text{b}}}\] for \[{C_5}{H_5}N\]\[ = 1.7 \times {10^{ - 9}}\].
\[\alpha = \sqrt {\dfrac{{{K_b}}}{{{C_0}}}} = \sqrt {\dfrac{{1.7 \times {{10}^{ - 9}}}}{{0.10}} = } 1.30 \times {10^{ - 4}}\]
So the degree of dissociation of pyridinium ion \[{{\alpha = }}\]\[1.30 \times {10^{ - 4}}\].
Therefore, percentage of pyridine that forms pyridinium ion is \[{{1}}{{.30 \times 1}}{{\text{0}}^{{\text{ - 4}}}}{{ \times 100 = 0}}{\text{.013% }}\].
Hence the correct option is (D).
Note: The Degree of dissociation of any solute within a solvent is basically the ratio of molar conductivity at C concentration and limiting molar conductivity at zero concentration or infinite dilution. This can be mathematically represented as \[\alpha = \dfrac{{{\Lambda _C}}}{{{\Lambda _0}}}\].
Complete step by step solution:
For the reaction,
Dilution constant can be written as:
\[{K_b} = \dfrac{{\left[ {{A^ + }} \right]\left[ {{B^ - }} \right]}}{{\left[ {AB} \right]}} = \dfrac{{\left( {\alpha {C_0}} \right)\left( {\alpha {C_0}} \right)}}{{\left( {1 - \alpha } \right){C_0}}} = \dfrac{{{\alpha ^2}}}{{1 - \alpha }} \times {C_0}\]
Where \[{{\alpha }}\]is the degree of dissociation of a weak electrolyte. And \[{{\text{C}}_{\text{0}}}\] is the concentration.
For weak electrolyte, \[\alpha < < 0\] so \[\left( {1 - \alpha } \right)\] can be neglected and the resulting equation is:
So, \[\alpha = \sqrt {\dfrac{{{K_b}}}{{{C_0}}}} \]
So, for pyridine on dilution with water results in pyridinium ion. In question, we are given that molarity of pyridine solution is 0.10M and \[{{\text{K}}_{\text{b}}}\] for \[{C_5}{H_5}N\]\[ = 1.7 \times {10^{ - 9}}\].
\[\alpha = \sqrt {\dfrac{{{K_b}}}{{{C_0}}}} = \sqrt {\dfrac{{1.7 \times {{10}^{ - 9}}}}{{0.10}} = } 1.30 \times {10^{ - 4}}\]
So the degree of dissociation of pyridinium ion \[{{\alpha = }}\]\[1.30 \times {10^{ - 4}}\].
Therefore, percentage of pyridine that forms pyridinium ion is \[{{1}}{{.30 \times 1}}{{\text{0}}^{{\text{ - 4}}}}{{ \times 100 = 0}}{\text{.013% }}\].
Hence the correct option is (D).
Note: The Degree of dissociation of any solute within a solvent is basically the ratio of molar conductivity at C concentration and limiting molar conductivity at zero concentration or infinite dilution. This can be mathematically represented as \[\alpha = \dfrac{{{\Lambda _C}}}{{{\Lambda _0}}}\].
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6