
Prove that the ${8^{th}}$ power of any number is of the form $17n$ or $17n \pm 1$.
Answer
232.5k+ views
Hint: Consider two cases for solving this problem. First will be the case where the number is prime with the prime number $17$ and the other where the number is not a prime with $17$. For case one, use Fermat's little theorem and prove that for case one the number with power $8$ can be written as $17n \pm 1$ . For case two, a number is already multiple of $17$ , so it can be written as the product of $17$ and integer $n$ .
Complete step by step answer:
In this problem, we have to prove that any number having power $8$ can be expressed in the form of $17n$ or $17n \pm 1$ where $'n'$ is some integer number.
For this problem, we can use Fermat’s little theorem. But before using this theorem we must understand it beforehand.
Fermat's little theorem is a fundamental theorem in elementary number theory, which helps compute powers of integers modulo prime numbers. According to this theorem, if $a$ is an integer, $p$ is a prime number and $a$ is not divisible by $p$, then ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right)$ .
A frequently used corollary of Fermat's Little Theorem is ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right)$ . As you can see, it is derived by multiplying both sides of the theorem by $a$ . The restated form is nice because we no longer need to restrict ourselves to integers $a$ not divisible by $p$ .
The expression ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right)$ can also be written as ${a^p} = a\left( {\bmod {\text{ }}p} \right)$ which means that the number ${a^{p - 1}}$ will be completely divisible by a prime number $p$ or is an integral multiple of $p$ .
Therefore, ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right) \Rightarrow {a^{p - 1}} - 1 = n \times p$ (i)
Now let’s take the value of $p = 17$ , this will give us:
$ \Rightarrow {a^{17 - 1}} - 1 = n \times 17 \Rightarrow {a^{16}} - 1 = 17n$
In the above expression we can write $1$ as ${1^2}$ and hence we can use the identity ${a^{2m}} - {b^{2n}} = {\left( {{a^m}} \right)^2} - {\left( {{b^n}} \right)^2} = \left( {{a^m} - {b^n}} \right)\left( {{a^m} + {b^n}} \right)$ in it. This will give us:
$ \Rightarrow {\left( {{a^8}} \right)^2} - {1^2} = 17n \rightarrow \left( {{a^8} - 1} \right)\left( {{a^8} + 1} \right) = 17n$
So now this concluded that the product of $\left( {{a^8} - 1} \right)$ and $\left( {{a^8} + 1} \right)$ is a multiple of a prime number $17$ . So either $\left( {{a^8} - 1} \right)$ or $\left( {{a^8} + 1} \right)$ is a multiple of the prime number $17$ .
Therefore, we can say $ \Rightarrow {a^8} = 17n \pm 1$
Now, if we consider the case where $a$ is not prime to $17$ , i.e. they already have a common factor other than one, which can only be $17$ , since it is a prime.
Therefore, $a$ can be represented as multiple of $17$ as $ \Rightarrow a = 17q$
Hence, ${a^8} = {\left( {17q} \right)^8} = 17\left( {{{17}^7}{q^8}} \right) = 17n$
Thus, we proved that a number with a power of $8$ , i.e. of form ${a^8}$ is of the form $17n{\text{ or }}17n \pm 1$.
Note: Notice that the use of Fermat’s little theorem is the most crucial part of the solution. Congruence modulo $n$ is a congruence relation, meaning that it is an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo $n$ is denoted: $a \equiv b\left( {\bmod {\text{ }}n} \right)$.
The parentheses mean that $\left( {\bmod {\text{ }}n} \right)$ applies to the entire equation, not just to the right-hand side (here b). This notation is not to be confused with the notation $b{\text{ mod }}n$ (without parentheses), which refers to the modulo operation. Indeed, $b{\text{ mod }}n$ denotes the unique integer $a$ such that $0 \leqslant a \leqslant n{\text{ and }}a \equiv b\left( {{\text{mod }}n} \right)$ (i.e., the remainder of $b$ when divided by $n$ ).
Complete step by step answer:
In this problem, we have to prove that any number having power $8$ can be expressed in the form of $17n$ or $17n \pm 1$ where $'n'$ is some integer number.
For this problem, we can use Fermat’s little theorem. But before using this theorem we must understand it beforehand.
Fermat's little theorem is a fundamental theorem in elementary number theory, which helps compute powers of integers modulo prime numbers. According to this theorem, if $a$ is an integer, $p$ is a prime number and $a$ is not divisible by $p$, then ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right)$ .
A frequently used corollary of Fermat's Little Theorem is ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right)$ . As you can see, it is derived by multiplying both sides of the theorem by $a$ . The restated form is nice because we no longer need to restrict ourselves to integers $a$ not divisible by $p$ .
The expression ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right)$ can also be written as ${a^p} = a\left( {\bmod {\text{ }}p} \right)$ which means that the number ${a^{p - 1}}$ will be completely divisible by a prime number $p$ or is an integral multiple of $p$ .
Therefore, ${a^{p - 1}} \equiv 1\left( {{\text{mod }}p} \right) \Rightarrow {a^{p - 1}} - 1 = n \times p$ (i)
Now let’s take the value of $p = 17$ , this will give us:
$ \Rightarrow {a^{17 - 1}} - 1 = n \times 17 \Rightarrow {a^{16}} - 1 = 17n$
In the above expression we can write $1$ as ${1^2}$ and hence we can use the identity ${a^{2m}} - {b^{2n}} = {\left( {{a^m}} \right)^2} - {\left( {{b^n}} \right)^2} = \left( {{a^m} - {b^n}} \right)\left( {{a^m} + {b^n}} \right)$ in it. This will give us:
$ \Rightarrow {\left( {{a^8}} \right)^2} - {1^2} = 17n \rightarrow \left( {{a^8} - 1} \right)\left( {{a^8} + 1} \right) = 17n$
So now this concluded that the product of $\left( {{a^8} - 1} \right)$ and $\left( {{a^8} + 1} \right)$ is a multiple of a prime number $17$ . So either $\left( {{a^8} - 1} \right)$ or $\left( {{a^8} + 1} \right)$ is a multiple of the prime number $17$ .
Therefore, we can say $ \Rightarrow {a^8} = 17n \pm 1$
Now, if we consider the case where $a$ is not prime to $17$ , i.e. they already have a common factor other than one, which can only be $17$ , since it is a prime.
Therefore, $a$ can be represented as multiple of $17$ as $ \Rightarrow a = 17q$
Hence, ${a^8} = {\left( {17q} \right)^8} = 17\left( {{{17}^7}{q^8}} \right) = 17n$
Thus, we proved that a number with a power of $8$ , i.e. of form ${a^8}$ is of the form $17n{\text{ or }}17n \pm 1$.
Note: Notice that the use of Fermat’s little theorem is the most crucial part of the solution. Congruence modulo $n$ is a congruence relation, meaning that it is an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo $n$ is denoted: $a \equiv b\left( {\bmod {\text{ }}n} \right)$.
The parentheses mean that $\left( {\bmod {\text{ }}n} \right)$ applies to the entire equation, not just to the right-hand side (here b). This notation is not to be confused with the notation $b{\text{ mod }}n$ (without parentheses), which refers to the modulo operation. Indeed, $b{\text{ mod }}n$ denotes the unique integer $a$ such that $0 \leqslant a \leqslant n{\text{ and }}a \equiv b\left( {{\text{mod }}n} \right)$ (i.e., the remainder of $b$ when divided by $n$ ).
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

