
Refractive index of a rectangular glass slab is $m = \sqrt 3 $. A light ray incident at an angle ${60^0}$ is displaced laterally through $2.5\,cm$ . Distance travelled by light in the slab isA. ${\text{ }}4cm$B. ${\text{ }}5cm$C. ${\text{ }}2.5\sqrt 3 cm$D. ${\text{ }}3cm$
Answer
133.5k+ views
Hint- In order to find the distance by light in the slab first we will assume the travelled distance as a variable. Then we will proceed further by using the lateral shift formula as Snell's law equation which is mentioned in the solution. We will make a clear ray diagram, and then we will proceed further by finding the angle between incident ray and emergent ray.
Formula used- $d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}},m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Complete step-by-step answer:

Note- Refraction is the transition of a wave's direction from one medium to another, or from a subtle change in the medium. Light refraction is the most frequently observed phenomenon but other waves like sound waves and water waves also experience refraction. Students must remember the nature of light when it moves from rarer to denser medium and vice-versa. Students must remember Snell’s law to solve such problems.
Formula used- $d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}},m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Given that- $m = \sqrt 3 $ , incident angle= ${60^0}$
We will use the following figure to solve this problem.
Complete step-by-step answer:
Let the length traveled in glass be l.
We know that Lateral shift is given as
$d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}}............(1)$
From figure by using the geometry
$t = l\cos {\theta '_b}..............(2)$
Substitute the value of t in above formula we have
$\because d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}}$
$ t = l\cos {{\theta '}_b} \\$
$\Rightarrow d = \left( {l\cos {{\theta '}_b}} \right) \times \dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}} \\$
$\Rightarrow d = l\sin \left( {{\theta _a} - {{\theta '}_b}} \right)..............(3) \\$
As we know that Snell's law equation is given as
$ \Rightarrow m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Put the value of m and incident angle in order to find the value of ${\theta '_b}$ , we have
$\because m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sqrt 3 = \dfrac{{\sin {{60}^0}}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sqrt 3 = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sin {{\theta '}_b} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\sqrt 3 }} = \dfrac{1}{2} \\$
$\Rightarrow {{\theta '}_b} = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\$
$\Rightarrow {{\theta '}_b} = {30^0} \\$
Now, substitute this value in above equation (3) to obtain the distance travelled by light in the slab, we obtain
$\because d = l\sin \left( {{\theta _a} - {{\theta '}_b}} \right) \\$
$\Rightarrow 2.5 = l\sin \left( {{{60}^0} - {{30}^0}} \right) \\$
$\Rightarrow 2.5 = l\sin \left( {{{30}^0}} \right) \\$
$\Rightarrow 2.5 = l \times \dfrac{1}{2} \\$
$\Rightarrow l = 2.5 \times 2 \\$
$\therefore l = 5\,cm $
Hence, the distance traveled by light in the slab is 5 cm.
Therefore, the correct answer is option B.
Note- Refraction is the transition of a wave's direction from one medium to another, or from a subtle change in the medium. Light refraction is the most frequently observed phenomenon but other waves like sound waves and water waves also experience refraction. Students must remember the nature of light when it moves from rarer to denser medium and vice-versa. Students must remember Snell’s law to solve such problems.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
