Answer
Verified
112.5k+ views
Hint Current in a conductor is due to motion of the free electrons in it and we all know that a conductor has a large number of free electrons in it. Resistance of any conductor depends on collisions (collisions of particles like electrons) inside the wire itself. Thinking in this direction can lead us to the answer.
Complete step-by-step answer:
Current in a conductor is due to motion of the free electrons in it so, when a potential difference is applied across the ends of a metallic wire, the free electrons begin to drift from the low potential to the high potential region which results in the flow of current inside the wire.
Resistance is defined as the opposition to the flow of electrical current through a conductor. It depends on collisions (collisions of particles like electrons) inside the wire itself.
As electrons move through a metal conductor, some collide with other particles, other atoms, other electrons or the impurities present inside the metal. These collisions cause resistance and generate heat. Heating the metal conductor causes atoms to vibrate more, which in turn makes it more difficult for the electrons to flow, increasing resistance.
Now, if we increase the resistance of the conductor, it means collisions within the wire increase. Electrons will find it more difficult to move due to more collisions with other particles.
This makes us realize that an increase in collisions reducing the flow of electrons, will decrease the current.
Hence the answer is current decreases on an increase in the resistance.
Note If we think practically then the solution of the question is described above. But if we think of theoretically, then a simple, theoretical and direct thinking of the solution can be thinking of the ohm’s law which indirectly states that current is inversely proportional to the resistance of the conductor.
Complete step-by-step answer:
Current in a conductor is due to motion of the free electrons in it so, when a potential difference is applied across the ends of a metallic wire, the free electrons begin to drift from the low potential to the high potential region which results in the flow of current inside the wire.
Resistance is defined as the opposition to the flow of electrical current through a conductor. It depends on collisions (collisions of particles like electrons) inside the wire itself.
As electrons move through a metal conductor, some collide with other particles, other atoms, other electrons or the impurities present inside the metal. These collisions cause resistance and generate heat. Heating the metal conductor causes atoms to vibrate more, which in turn makes it more difficult for the electrons to flow, increasing resistance.
Now, if we increase the resistance of the conductor, it means collisions within the wire increase. Electrons will find it more difficult to move due to more collisions with other particles.
This makes us realize that an increase in collisions reducing the flow of electrons, will decrease the current.
Hence the answer is current decreases on an increase in the resistance.
Note If we think practically then the solution of the question is described above. But if we think of theoretically, then a simple, theoretical and direct thinking of the solution can be thinking of the ohm’s law which indirectly states that current is inversely proportional to the resistance of the conductor.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics