
The capacitance of a spherical condenser is \[1\mu F\] . If the spacing between the two spheres is \[\text{1 mm}\] , then the radius of the outer sphere is
(A) \[30cm\]
(B) \[6m\]
(C) \[5cm\]
(D) \[3m\]
Answer
127.8k+ views
Hint: A spherical capacitor consists of a solid or hollow spherical conductor of a certain radius surrounded by another concentric spherical conductor of a larger radius. The capacitance for spherical conductors can be obtained by finding the voltage difference between the conductors for a given charge.
Formula Used:
\[C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}}\]
Complete step by step answer:
We have been provided with the capacitance of the spherical capacitor and the spacing between the two conductors, which is the difference between their radii.
Capacitance of the spherical capacitor \[(C)=1\mu F={{10}^{-3}}F\] since \[1\mu F={{10}^{-6}}F\]
Also, spacing between the conductors \[({{R}_{2}}-{{R}_{1}})=1mm={{10}^{-3}}m\]
Now since the spacing is very small, we can consider the two capacitors to have almost equal radii, that is \[{{R}_{1}}\approx {{R}_{2}}\]
Also, we know the value of the constant in the capacitor formula, that is, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}\]
Substituting all the values listed above in our formula, we get
\[\begin{align}
& C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}} \\
& \Rightarrow {{10}^{-6}}F=\dfrac{{{R}_{1}}{{R}_{2}}}{9\times {{10}^{9}}\times {{10}^{-3}}} \\
& \Rightarrow {{R}_{1}}{{R}_{2}}=9{{m}^{2}} \\
& \Rightarrow {{R}_{2}}^{2}=9{{m}^{2}}(\because {{R}_{1}}\approx {{R}_{2}}) \\
& \Rightarrow {{R}_{2}}=3m \\
\end{align}\]
Hence the outer and the inner radius of the spherical conductors forming the capacitor are approximately equal to \[3m\] (a difference of one millimetre in their radius)
But we are only concerned with the outer radius and hence option (D) is the correct answer.
Additional Information: Every spherical conductor having a certain amount of charge acts as a capacitor, even an isolated sphere is considered as a capacitor whose second plate is at infinity. The applications for an isolated spherical capacitor or a pair of spherical capacitors illustrate that a charged sphere has some stored energy as a result of being charged.
Note: Although we have assumed the radii of the two spheres to be equal, we didn’t take their difference to be zero because the spacing between them, although very negligible, is still a gap and means that their radii are only approximately equal. We had to make the assumption because we didn’t have any other piece of information to help us solve the question.
Formula Used:
\[C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}}\]
Complete step by step answer:
We have been provided with the capacitance of the spherical capacitor and the spacing between the two conductors, which is the difference between their radii.
Capacitance of the spherical capacitor \[(C)=1\mu F={{10}^{-3}}F\] since \[1\mu F={{10}^{-6}}F\]
Also, spacing between the conductors \[({{R}_{2}}-{{R}_{1}})=1mm={{10}^{-3}}m\]
Now since the spacing is very small, we can consider the two capacitors to have almost equal radii, that is \[{{R}_{1}}\approx {{R}_{2}}\]
Also, we know the value of the constant in the capacitor formula, that is, \[\dfrac{1}{4\pi {{\varepsilon }_{0}}}=9\times {{10}^{9}}\]
Substituting all the values listed above in our formula, we get
\[\begin{align}
& C=\dfrac{4\pi {{\varepsilon }_{0}}{{R}_{1}}{{R}_{2}}}{{{R}_{2}}-{{R}_{1}}} \\
& \Rightarrow {{10}^{-6}}F=\dfrac{{{R}_{1}}{{R}_{2}}}{9\times {{10}^{9}}\times {{10}^{-3}}} \\
& \Rightarrow {{R}_{1}}{{R}_{2}}=9{{m}^{2}} \\
& \Rightarrow {{R}_{2}}^{2}=9{{m}^{2}}(\because {{R}_{1}}\approx {{R}_{2}}) \\
& \Rightarrow {{R}_{2}}=3m \\
\end{align}\]
Hence the outer and the inner radius of the spherical conductors forming the capacitor are approximately equal to \[3m\] (a difference of one millimetre in their radius)
But we are only concerned with the outer radius and hence option (D) is the correct answer.
Additional Information: Every spherical conductor having a certain amount of charge acts as a capacitor, even an isolated sphere is considered as a capacitor whose second plate is at infinity. The applications for an isolated spherical capacitor or a pair of spherical capacitors illustrate that a charged sphere has some stored energy as a result of being charged.
Note: Although we have assumed the radii of the two spheres to be equal, we didn’t take their difference to be zero because the spacing between them, although very negligible, is still a gap and means that their radii are only approximately equal. We had to make the assumption because we didn’t have any other piece of information to help us solve the question.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

JEE Main Marks Vs Percentile 2025: Calculate Percentile Based on Marks
