The capacitance of a variable capacitor can be charged from $50 \mathrm{pF}$ to $850 \mathrm{pF}$ by turning the dial from $0^{\circ}$ to $180^{\circ} .$ With the dial set at $180^{\circ}$, the capacitor is connected to a $400 \mathrm{V}$ After charging the capacitor is disconnected from the battery and the dial is turned to $0^{\circ} .$ Now the potential difference across the capacitor is:
(A) 7.6 V
(B) $7.6\times {{10}^{3}}V$
(C) $7.6\times {{10}^{2}}V$$7.6\times {{10}^{2}}V$
(D) None
Answer
Verified
120.9k+ views
Hint We know that capacitance is the ratio of the change in electric charge of a system to the corresponding change in its electric potential. There are two closely related notions of capacitance: self-capacitance and mutual capacitance. Any object that can be electrically charged exhibits self-capacitance. Capacitance is the ability of a component or circuit to collect and store energy in the form of an electrical charge. Capacitors are energy-storing devices available in many sizes and shapes. It doesn't depend on the EMF of the charging source or on the charges at the plates at some given instant. The charge stored remains the same and thus, one can infer that, the capacitance has increased.
Complete step by step answer From the data given in the question, we know that,
Capacitance when dial is $0^{\circ}=50$ pf $=50 \times 10^{-12} \mathrm{F}$
Capacitance when dial is ${{180}^{{}^\circ }}=850\text{pf}=850\times {{10}^{-12}}\text{F}$
Voltage of the battery = 400V
Energy stored in capacitor,
${{u}_{C}}=\dfrac{1}{2}C{{V}^{2}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
When dial in set at $180^{\circ}$
${{u}_{C}}=\dfrac{1}{2}\times 850\times {{10}^{-12}}\times {{(400)}^{2}}=6.8\times {{10}^{-5}}\text{J}$
${{U}_{c}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$Q=\sqrt{2{{U}_{C}}C}=\sqrt{2\times 6.8\times {{10}^{-5}}\times 850\times {{10}^{-12}}}$
$\Rightarrow Q=3.4\times {{10}^{-7}}\text{C}$
When dial is set at $0^{\circ}$
${{U}_{C}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$=\dfrac{1}{2}\times \dfrac{3\cdot 4\times {{10}^{-7}}\times 3\cdot 4\times {{10}^{-7}}}{50\times {{10}^{-12}}}=1.44\times {{10}^{-2}}\text{J}$
$1.44\times {{10}^{-2}}=\dfrac{1}{2}\text{C}{{\text{V}}^{2}}$
$\Rightarrow \text{V}=\sqrt{\dfrac{2\times 1.44\times {{10}^{-2}}}{50\times {{10}^{-12}}}}=24000\text{V}$
As no other option matches with the solution.
therefore, the correct answer is Option D.
Note: We can say that if the electric potential difference between two locations is 1 volt, then one Coulomb of charge will gain 1 joule of potential energy when moved between those two locations. Because electric potential difference is expressed in units of volts, it is sometimes referred to as the voltage. Voltmeters are used to measure the potential difference between two points.
There is a misconception about potential and voltage. Many of us think that both are the same. But voltage is not exactly potential; it is the measure of the electric potential difference between two points. When a voltage is connected across a wire, an electric field is produced in the wire. Metal wire is a conductor. Some electrons around the metal atoms are free to move from atom to atom. This causes a difference in energy across the component, which is known as an electrical potential difference.
Complete step by step answer From the data given in the question, we know that,
Capacitance when dial is $0^{\circ}=50$ pf $=50 \times 10^{-12} \mathrm{F}$
Capacitance when dial is ${{180}^{{}^\circ }}=850\text{pf}=850\times {{10}^{-12}}\text{F}$
Voltage of the battery = 400V
Energy stored in capacitor,
${{u}_{C}}=\dfrac{1}{2}C{{V}^{2}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
When dial in set at $180^{\circ}$
${{u}_{C}}=\dfrac{1}{2}\times 850\times {{10}^{-12}}\times {{(400)}^{2}}=6.8\times {{10}^{-5}}\text{J}$
${{U}_{c}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$Q=\sqrt{2{{U}_{C}}C}=\sqrt{2\times 6.8\times {{10}^{-5}}\times 850\times {{10}^{-12}}}$
$\Rightarrow Q=3.4\times {{10}^{-7}}\text{C}$
When dial is set at $0^{\circ}$
${{U}_{C}}=\dfrac{1}{2}\dfrac{{{Q}^{2}}}{C}$
$=\dfrac{1}{2}\times \dfrac{3\cdot 4\times {{10}^{-7}}\times 3\cdot 4\times {{10}^{-7}}}{50\times {{10}^{-12}}}=1.44\times {{10}^{-2}}\text{J}$
$1.44\times {{10}^{-2}}=\dfrac{1}{2}\text{C}{{\text{V}}^{2}}$
$\Rightarrow \text{V}=\sqrt{\dfrac{2\times 1.44\times {{10}^{-2}}}{50\times {{10}^{-12}}}}=24000\text{V}$
As no other option matches with the solution.
therefore, the correct answer is Option D.
Note: We can say that if the electric potential difference between two locations is 1 volt, then one Coulomb of charge will gain 1 joule of potential energy when moved between those two locations. Because electric potential difference is expressed in units of volts, it is sometimes referred to as the voltage. Voltmeters are used to measure the potential difference between two points.
There is a misconception about potential and voltage. Many of us think that both are the same. But voltage is not exactly potential; it is the measure of the electric potential difference between two points. When a voltage is connected across a wire, an electric field is produced in the wire. Metal wire is a conductor. Some electrons around the metal atoms are free to move from atom to atom. This causes a difference in energy across the component, which is known as an electrical potential difference.
Recently Updated Pages
Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main