
The chord joining two points ${\theta _1}{\text{ and }}{\theta _2}$on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ such that $\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}}$ will subtend a right angle at
$
(a){\text{ focus}} \\
(b){\text{ center}} \\
(c){\text{ end of the major axis}} \\
(d){\text{ end of the minor axis}} \\
$
Answer
131.4k+ views
Hint: In this question suppose two points ${\theta _1}$ and ${\theta _2}$ such that ${\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$ and ${\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$through which the chord passes. Then use the concept of slope of line passing through two given points to find the slope of $O{\theta _1}{\text{ and O}}{\theta _2}$ where O is the origin. Use the concept that if two lines are perpendicular then their slopes are related as ${m_1} \times {m_2} = - 1$.
Complete step-by-step answer:

The chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is shown above.
As we know that the ellipse is having a center (O) = (0, 0) is also shown in the figure.
Let us suppose the point ${\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$ and ${\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$ is also shown in the figure.
Now as we know that the slope between two points $(x_1, y_1)$ and $(x_2, y_2)$ is given as
Slope (m) = $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So find out the slopes of $\left( {O{\theta _1}} \right)$ and $\left( {O{\theta _2}} \right)$.
Let O = $(x_1, y_1)$ = (0, 0)
${\theta _1} = \left( {{x_2},{y_2}} \right) = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$
${\theta _2} = \left( {{x_3},{y_3}} \right) = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$
So let the slope of $\left( {0{\theta _1}} \right)$ be m1.
$ \Rightarrow {m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \dfrac{{b\sin {\theta _1} - 0}}{{a\cos {\theta _1} - 0}} = \dfrac{b}{a}\tan {\theta _1}$
Now let the slope of $\left( {O{\theta _2}} \right)$ be m2.
$ \Rightarrow {m_1} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}} = \dfrac{{b\sin {\theta _2} - 0}}{{a\cos {\theta _2} - 0}} = \dfrac{b}{a}\tan {\theta _2}$
Now multiply the slopes we have
$ \Rightarrow {m_1} \times {m_2} = \dfrac{b}{a}\tan {\theta _1} \times \dfrac{b}{a}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2}$........................ (1)
Now it is given that
$\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}}$
Now substitute this value in equation (1) we have,
$ \Rightarrow {m_1} \times {m_2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{ - {a^2}}}{{{b^2}}} = - 1$
So multiplication of slopes is (-1) which is the condition of the right angle.
Therefore the chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ will subtend a right angle at origin or center.
Hence option (B) is correct.
Note: The center of the given ellipse that is $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is (0, 0) that is the origin that’s why option (c) is correct. The equation of shifted ellipse or the ellipse whose center is not at origin is given by $\dfrac{{{{\left( {x - p} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - q} \right)}^2}}}{{{b^2}}} = 1$ here the center is at (p, q).
Complete step-by-step answer:

The chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is shown above.
As we know that the ellipse is having a center (O) = (0, 0) is also shown in the figure.
Let us suppose the point ${\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$ and ${\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$ is also shown in the figure.
Now as we know that the slope between two points $(x_1, y_1)$ and $(x_2, y_2)$ is given as
Slope (m) = $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So find out the slopes of $\left( {O{\theta _1}} \right)$ and $\left( {O{\theta _2}} \right)$.
Let O = $(x_1, y_1)$ = (0, 0)
${\theta _1} = \left( {{x_2},{y_2}} \right) = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$
${\theta _2} = \left( {{x_3},{y_3}} \right) = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$
So let the slope of $\left( {0{\theta _1}} \right)$ be m1.
$ \Rightarrow {m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \dfrac{{b\sin {\theta _1} - 0}}{{a\cos {\theta _1} - 0}} = \dfrac{b}{a}\tan {\theta _1}$
Now let the slope of $\left( {O{\theta _2}} \right)$ be m2.
$ \Rightarrow {m_1} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}} = \dfrac{{b\sin {\theta _2} - 0}}{{a\cos {\theta _2} - 0}} = \dfrac{b}{a}\tan {\theta _2}$
Now multiply the slopes we have
$ \Rightarrow {m_1} \times {m_2} = \dfrac{b}{a}\tan {\theta _1} \times \dfrac{b}{a}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2}$........................ (1)
Now it is given that
$\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}}$
Now substitute this value in equation (1) we have,
$ \Rightarrow {m_1} \times {m_2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{ - {a^2}}}{{{b^2}}} = - 1$
So multiplication of slopes is (-1) which is the condition of the right angle.
Therefore the chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ will subtend a right angle at origin or center.
Hence option (B) is correct.
Note: The center of the given ellipse that is $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is (0, 0) that is the origin that’s why option (c) is correct. The equation of shifted ellipse or the ellipse whose center is not at origin is given by $\dfrac{{{{\left( {x - p} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - q} \right)}^2}}}{{{b^2}}} = 1$ here the center is at (p, q).
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

Difference Between Mutually Exclusive and Independent Events

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
