
The contrapositive of the statement 'If I am not feeling well, then I will go to the doctor' is
\[{\text{A}}{\text{.}}\] If I am feeling well, then I will not go to the doctor
\[{\text{B}}{\text{.}}\] If I will go to the doctor, then I am feeling well
\[{\text{C}}{\text{.}}\] If I will not go to the doctor, then I am feeling well
\[{\text{D}}{\text{.}}\]If I will go to the doctor, then I am not feeling well
Answer
232.8k+ views
Hint: In order to solve this problem we need to know that the contrapositive is the statement, which is the opposite of the given statement. Also, the contrapositive of a statement is the switching of the hypothesis and the conclusion of a conditional statement and negating both.
Complete step-by-step solution:
Here the statement is 'If I am not feeling well, then I will go to the doctor'.
Let P be “I am not feeling well” and Q is “I will go to the doctor”.
Statements mean if P, then Q can be written as $P \to Q$
Now contrapositive of the statement is
$ \Rightarrow \sim \left( {P \to Q} \right) = \sim Q \to \sim P$ (Since the contrapositive of P and Q is $ \sim Q$ and $ \sim P$)
This is written in statement as:
If I do not go to the doctor, then I am feeling well.
Hence option C is the correct answer.
Note: Here in this question the law of contraposition says that a statement is true if, and only if, its contrapositive is true. To form the contrapositive of the conditional statement, interchange the hypothesis and the conclusion of the inverse statement. The contrapositive of "If it rains, then they cancel school" is "If they do not cancel school, then it does not rain." If p, then q. If q, then p. And for solving these types of questions let the statement in symbol then apply contrapositive law to make the problem easy. Doing this will solve your problem and will give you the right answer.
Complete step-by-step solution:
Here the statement is 'If I am not feeling well, then I will go to the doctor'.
Let P be “I am not feeling well” and Q is “I will go to the doctor”.
Statements mean if P, then Q can be written as $P \to Q$
Now contrapositive of the statement is
$ \Rightarrow \sim \left( {P \to Q} \right) = \sim Q \to \sim P$ (Since the contrapositive of P and Q is $ \sim Q$ and $ \sim P$)
This is written in statement as:
If I do not go to the doctor, then I am feeling well.
Hence option C is the correct answer.
Note: Here in this question the law of contraposition says that a statement is true if, and only if, its contrapositive is true. To form the contrapositive of the conditional statement, interchange the hypothesis and the conclusion of the inverse statement. The contrapositive of "If it rains, then they cancel school" is "If they do not cancel school, then it does not rain." If p, then q. If q, then p. And for solving these types of questions let the statement in symbol then apply contrapositive law to make the problem easy. Doing this will solve your problem and will give you the right answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

