
The drift velocity of free electrons in a conductor is v, when a current. I is flowing in it if both the radius and current are doubled, then drift velocity will be.
A. \[\dfrac{v}{4}\]
B. \[\dfrac{v}{2}\]
C. \[2v\]
D. \[4v\]
Answer
232.8k+ views
Hint:The drift velocity is the rate of distance covered by the charge particle between two consecutive collisions from neighbouring atoms in an atom.
Formula used:
\[{v_d} = \dfrac{J}{{ne}}\]
where \[{v_d}\] is the drift velocity, \[J\] is the current density, n is the number of free electrons per unit volume and e is the charge on the electron.
Complete step by step solution:
When potential is applied across the wire then there is an electric field generated inside the wire which applies force on the free electrons. The applied force on the free electrons makes them move inside the wire. The average velocity gained by the free electron is called the drift velocity of the electron. Using the formula of the drift velocity,
\[{v_d} = \dfrac{J}{{ne}}\]
As the J is the current density of the wire, so it is equal to the electric current flowing per unit cross-sectional area of the wire,
\[J = \dfrac{i}{A}\]
On substituting the expression for the current density in the formula of drift velocity, we get
\[{v_d} = \dfrac{i}{{neA}}\]
\[\Rightarrow {v_d} = \dfrac{i}{{ne\pi {r^2}}}\]
It is given that both the current and the radius get doubled.
\[{i_2} = 2{i_1}\]
\[\Rightarrow {r_2} = 2{r_1}\]
The initial drift velocity is given as v,
\[v = \dfrac{{{i_1}}}{{ne\pi r_1^2}}\]
Let the final drift velocity is \[{v_2}\].
\[{v_2} = \dfrac{{{i_2}}}{{ne\pi r_2^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{ne\pi {{\left( {2{r_1}} \right)}^2}}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{4ne\pi r_1^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{1}{2}\left( {\dfrac{{{i_1}}}{{ne\pi r_1^2}}} \right) \\ \]
\[\therefore {v_2} = \dfrac{v}{2}\]
Hence, the final drift velocity is \[\dfrac{v}{2}\].
Therefore, the correct option is B.
Note: The drift velocity depends on the cross-section of the wire (A), the number of free electrons per unit volume (n) and the magnitude of the electric current. It does not depend upon the length of the wire.
Formula used:
\[{v_d} = \dfrac{J}{{ne}}\]
where \[{v_d}\] is the drift velocity, \[J\] is the current density, n is the number of free electrons per unit volume and e is the charge on the electron.
Complete step by step solution:
When potential is applied across the wire then there is an electric field generated inside the wire which applies force on the free electrons. The applied force on the free electrons makes them move inside the wire. The average velocity gained by the free electron is called the drift velocity of the electron. Using the formula of the drift velocity,
\[{v_d} = \dfrac{J}{{ne}}\]
As the J is the current density of the wire, so it is equal to the electric current flowing per unit cross-sectional area of the wire,
\[J = \dfrac{i}{A}\]
On substituting the expression for the current density in the formula of drift velocity, we get
\[{v_d} = \dfrac{i}{{neA}}\]
\[\Rightarrow {v_d} = \dfrac{i}{{ne\pi {r^2}}}\]
It is given that both the current and the radius get doubled.
\[{i_2} = 2{i_1}\]
\[\Rightarrow {r_2} = 2{r_1}\]
The initial drift velocity is given as v,
\[v = \dfrac{{{i_1}}}{{ne\pi r_1^2}}\]
Let the final drift velocity is \[{v_2}\].
\[{v_2} = \dfrac{{{i_2}}}{{ne\pi r_2^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{ne\pi {{\left( {2{r_1}} \right)}^2}}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{4ne\pi r_1^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{1}{2}\left( {\dfrac{{{i_1}}}{{ne\pi r_1^2}}} \right) \\ \]
\[\therefore {v_2} = \dfrac{v}{2}\]
Hence, the final drift velocity is \[\dfrac{v}{2}\].
Therefore, the correct option is B.
Note: The drift velocity depends on the cross-section of the wire (A), the number of free electrons per unit volume (n) and the magnitude of the electric current. It does not depend upon the length of the wire.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

