The electronic configuration of bivalent europium and trivalent cerium are:
[Atomic number: Xe = 54, Ce = 58, Eu = 63]
A. \[[Xe]4{f^7}6{s^2}\, and \,\,[Xe]4{f^2}6{s^2}\]
B. \[[Xe]4{f^4}\, and \,\,[Xe]4{f^9}\]
C. \[[Xe]4{f^2}\, and \,\,[Xe]4{f^7}\]
D. \[[Xe]4{f^7}\, and \,\,[Xe]4{f^1}\]
Answer
Verified
122.7k+ views
Hint: To solve this question, first identify the electronic configuration of both the given elements. Then understand which ions of the given elements are required. After that, remove the corresponding number of electrons from the elements and write their final electronic configurations.
Complete Step-by-Step answer:
The atomic numbers of the given elements, Europium and Cerium are 63 and 58 respectively. From this, the electronic configuration of Europium and Cerium can be written as follows:
Electronic configuration of europium = Eu = \[[Xe]4{f^7}6{s^2}\]
Electronic configuration of cerium = Ce = \[[Xe]4{f^1}5{d^1}6{s^2}\]
Now the conditions that have been given to us are that the europium atom is made bivalent and the cerium atom is made trivalent. Making an atom trivalent means removing three electrons from the atom.
Hence, after removing 2 electrons from europium and 3 electrons from cerium, the electron configurations thus obtained are:
For Europium: \[[Xe]4{f^7}\]
For cerium: \[[Xe]4{f^1}\]
Hence, Option D is the correct option.
Note: While all lanthanides form relatively large trivalent (3+) ions, Eu and cerium (Ce) have additional valances, europium forms 2+ ions, and Ce forms 4+ ions, leading to chemical reaction differences in how these ions can partition versus the 3+ REEs.
Complete Step-by-Step answer:
The atomic numbers of the given elements, Europium and Cerium are 63 and 58 respectively. From this, the electronic configuration of Europium and Cerium can be written as follows:
Electronic configuration of europium = Eu = \[[Xe]4{f^7}6{s^2}\]
Electronic configuration of cerium = Ce = \[[Xe]4{f^1}5{d^1}6{s^2}\]
Now the conditions that have been given to us are that the europium atom is made bivalent and the cerium atom is made trivalent. Making an atom trivalent means removing three electrons from the atom.
Hence, after removing 2 electrons from europium and 3 electrons from cerium, the electron configurations thus obtained are:
For Europium: \[[Xe]4{f^7}\]
For cerium: \[[Xe]4{f^1}\]
Hence, Option D is the correct option.
Note: While all lanthanides form relatively large trivalent (3+) ions, Eu and cerium (Ce) have additional valances, europium forms 2+ ions, and Ce forms 4+ ions, leading to chemical reaction differences in how these ions can partition versus the 3+ REEs.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main
Total number of orbitals associated with the 3rd shell class 11 chemistry JEE_Main
Which of the following has the lowest boiling point class 11 chemistry JEE_Main
Which of the following compounds has zero dipole moment class 11 chemistry JEE_Main
Number of g of oxygen in 322 g Na2SO410H2O is Molwt class 11 chemistry JEE_Main
In the neutralization process of H3PO4 and NaOH the class 11 chemistry JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs