
The electronic configuration of bivalent europium and trivalent cerium are:
[Atomic number: Xe = 54, Ce = 58, Eu = 63]
A. \[[Xe]4{f^7}6{s^2}\, and \,\,[Xe]4{f^2}6{s^2}\]
B. \[[Xe]4{f^4}\, and \,\,[Xe]4{f^9}\]
C. \[[Xe]4{f^2}\, and \,\,[Xe]4{f^7}\]
D. \[[Xe]4{f^7}\, and \,\,[Xe]4{f^1}\]
Answer
232.8k+ views
Hint: To solve this question, first identify the electronic configuration of both the given elements. Then understand which ions of the given elements are required. After that, remove the corresponding number of electrons from the elements and write their final electronic configurations.
Complete Step-by-Step answer:
The atomic numbers of the given elements, Europium and Cerium are 63 and 58 respectively. From this, the electronic configuration of Europium and Cerium can be written as follows:
Electronic configuration of europium = Eu = \[[Xe]4{f^7}6{s^2}\]
Electronic configuration of cerium = Ce = \[[Xe]4{f^1}5{d^1}6{s^2}\]
Now the conditions that have been given to us are that the europium atom is made bivalent and the cerium atom is made trivalent. Making an atom trivalent means removing three electrons from the atom.
Hence, after removing 2 electrons from europium and 3 electrons from cerium, the electron configurations thus obtained are:
For Europium: \[[Xe]4{f^7}\]
For cerium: \[[Xe]4{f^1}\]
Hence, Option D is the correct option.
Note: While all lanthanides form relatively large trivalent (3+) ions, Eu and cerium (Ce) have additional valances, europium forms 2+ ions, and Ce forms 4+ ions, leading to chemical reaction differences in how these ions can partition versus the 3+ REEs.
Complete Step-by-Step answer:
The atomic numbers of the given elements, Europium and Cerium are 63 and 58 respectively. From this, the electronic configuration of Europium and Cerium can be written as follows:
Electronic configuration of europium = Eu = \[[Xe]4{f^7}6{s^2}\]
Electronic configuration of cerium = Ce = \[[Xe]4{f^1}5{d^1}6{s^2}\]
Now the conditions that have been given to us are that the europium atom is made bivalent and the cerium atom is made trivalent. Making an atom trivalent means removing three electrons from the atom.
Hence, after removing 2 electrons from europium and 3 electrons from cerium, the electron configurations thus obtained are:
For Europium: \[[Xe]4{f^7}\]
For cerium: \[[Xe]4{f^1}\]
Hence, Option D is the correct option.
Note: While all lanthanides form relatively large trivalent (3+) ions, Eu and cerium (Ce) have additional valances, europium forms 2+ ions, and Ce forms 4+ ions, leading to chemical reaction differences in how these ions can partition versus the 3+ REEs.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

