
The enthalpy of hydrogenation of cyclohexene is $-119.5 kJ mol^{-1}$. If resonance energy of benzene is $-150.4 kJ mol^{-1}$, its enthalpy of hydrogenation would be:
A. $-269.9 kJ mol^{-1}$
B. $-358.5 kJ mol^{-1}$
C. $-508.9 kJ mol^{-1}$
D. $-208.1 kJ mol^{-1}$
Answer
141.3k+ views
Hint: There are 3 double bonds in benzene and for breaking 3 double bonds, 3 \[{{H}_{2}}\] molecules are required. We should remove resonance energy from total enthalpy of the reaction.
Complete step-by-step answer:
This is the hydrogenation reaction of cyclohexene:

In this reaction for breaking one double bond one hydrogen molecule is required and in benzene 3 double bonds are there so 3 hydrogen molecules are required for breaking double bonds of benzene.
Given, Enthalpy of hydrogenation of cyclohexene(\[\Delta {{H}_{cyclohexene}}\]) = $-119.5 kJ mol^{-1}$
Here, Enthalpy of benzene (\[\Delta {{H}_{benzene}}\]) = 3 x (enthalpy of hydrogenation of cyclohexene)
= 3 x ($-119.5 kJ mol^{-1}$)
= $-358.5 kJ mol^{-1}$
Given, resonance energy of benzene = $-150.4 kJ mol^{-1}$
So, for calculating actual enthalpy of hydrogenation = Enthalpy of benzene – resonance energy of benzene.
From given data:
Enthalpy of hydrogenation = (-358.5) - (-150.4)
= $-208.1 kJ mol^{-1}$
So, the answer is “D”.
Note: Don’t forget to take signs of energy or enthalpy in calculation. You should remove resonance energy from the total enthalpy of reaction. For breaking every \[\pi \] bond 1 molecule of hydrogen is required.
Complete step-by-step answer:
This is the hydrogenation reaction of cyclohexene:

In this reaction for breaking one double bond one hydrogen molecule is required and in benzene 3 double bonds are there so 3 hydrogen molecules are required for breaking double bonds of benzene.
Given, Enthalpy of hydrogenation of cyclohexene(\[\Delta {{H}_{cyclohexene}}\]) = $-119.5 kJ mol^{-1}$
Here, Enthalpy of benzene (\[\Delta {{H}_{benzene}}\]) = 3 x (enthalpy of hydrogenation of cyclohexene)
= 3 x ($-119.5 kJ mol^{-1}$)
= $-358.5 kJ mol^{-1}$
Given, resonance energy of benzene = $-150.4 kJ mol^{-1}$
So, for calculating actual enthalpy of hydrogenation = Enthalpy of benzene – resonance energy of benzene.
From given data:
Enthalpy of hydrogenation = (-358.5) - (-150.4)
= $-208.1 kJ mol^{-1}$
So, the answer is “D”.
Note: Don’t forget to take signs of energy or enthalpy in calculation. You should remove resonance energy from the total enthalpy of reaction. For breaking every \[\pi \] bond 1 molecule of hydrogen is required.
Recently Updated Pages
Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Types of Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
