Answer
Verified
111.6k+ views
Hint: There are 3 double bonds in benzene and for breaking 3 double bonds, 3 \[{{H}_{2}}\] molecules are required. We should remove resonance energy from total enthalpy of the reaction.
Complete step-by-step answer:
This is the hydrogenation reaction of cyclohexene:
In this reaction for breaking one double bond one hydrogen molecule is required and in benzene 3 double bonds are there so 3 hydrogen molecules are required for breaking double bonds of benzene.
Given, Enthalpy of hydrogenation of cyclohexene(\[\Delta {{H}_{cyclohexene}}\]) = $-119.5 kJ mol^{-1}$
Here, Enthalpy of benzene (\[\Delta {{H}_{benzene}}\]) = 3 x (enthalpy of hydrogenation of cyclohexene)
= 3 x ($-119.5 kJ mol^{-1}$)
= $-358.5 kJ mol^{-1}$
Given, resonance energy of benzene = $-150.4 kJ mol^{-1}$
So, for calculating actual enthalpy of hydrogenation = Enthalpy of benzene – resonance energy of benzene.
From given data:
Enthalpy of hydrogenation = (-358.5) - (-150.4)
= $-208.1 kJ mol^{-1}$
So, the answer is “D”.
Note: Don’t forget to take signs of energy or enthalpy in calculation. You should remove resonance energy from the total enthalpy of reaction. For breaking every \[\pi \] bond 1 molecule of hydrogen is required.
Complete step-by-step answer:
This is the hydrogenation reaction of cyclohexene:
In this reaction for breaking one double bond one hydrogen molecule is required and in benzene 3 double bonds are there so 3 hydrogen molecules are required for breaking double bonds of benzene.
Given, Enthalpy of hydrogenation of cyclohexene(\[\Delta {{H}_{cyclohexene}}\]) = $-119.5 kJ mol^{-1}$
Here, Enthalpy of benzene (\[\Delta {{H}_{benzene}}\]) = 3 x (enthalpy of hydrogenation of cyclohexene)
= 3 x ($-119.5 kJ mol^{-1}$)
= $-358.5 kJ mol^{-1}$
Given, resonance energy of benzene = $-150.4 kJ mol^{-1}$
So, for calculating actual enthalpy of hydrogenation = Enthalpy of benzene – resonance energy of benzene.
From given data:
Enthalpy of hydrogenation = (-358.5) - (-150.4)
= $-208.1 kJ mol^{-1}$
So, the answer is “D”.
Note: Don’t forget to take signs of energy or enthalpy in calculation. You should remove resonance energy from the total enthalpy of reaction. For breaking every \[\pi \] bond 1 molecule of hydrogen is required.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main Chemistry Question Paper PDF Download with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
Average and RMS Value for JEE Main
Inertial and Non-Inertial Frame of Reference - JEE Important Topic
The electronic configuration of bivalent europium and class 11 chemistry JEE_Main
Semicircular Ring - Centre of Mass and Its Application for JEE
A system works in a cyclic process It absorbs 20 calories class 11 chemistry JEE_Main
JEE Main 2022 June 25 Shift 1 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 8 Redox Reactions
Physical Chemistry
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Advanced 2025 Notes