
The fast French train known as the T.G.V (Train Grande Vitesse ) has a scheduled average speed of $216km/h$.
(A) If the train goes around a curve at that speed and the magnitude of the acceleration experienced by the passengers is to be limited to $0.05g$, what is the smallest radius of curvature for the track that can be tolerated?
(B) At what speed must the train go around a curve with a $1.00km$ radius to be at the acceleration limit?
Answer
127.8k+ views
Hint: This question can be solved by the use of the concept of centripetal force. Using the centripetal acceleration formula first we will evaluate the minimum radius of curvature for the track that can be tolerated and then by using the obtained value of the radius we will find the speed of the train using the same centripetal acceleration formula.
Formula used:
The centripetal acceleration
${a_c} = \dfrac{{{v^2}}}{r}$
Where $v$ is the speed and $r$ is the radius of curvature.
Complete step-by-step solution
In this question, the scheduled average speed of the train is given as $216km/h$, hence
$ \Rightarrow v = 216km/h$
Now we have to change the unit into the $m/s$for our convenience, therefore
$ \Rightarrow v = 216 \times \dfrac{{1000}}{{3600}}m/s$
$ \Rightarrow v = 216 \times \dfrac{5}{{18}}m/s$
$\therefore v = 60m/s$
Now we will try to solve the given subparts one by one.
(A) In this subpart, it is given that the maximum magnitude of the acceleration experienced by the passengers is $0.05g$, where $g = 9.8m/{s^2}$which is the gravitational acceleration.
Now using these given values we will try to find the minimum radius of curvature which can be tolerated by the track. Hence we will consider the formula of centripetal acceleration ${a_c}$.
${a_c} = \dfrac{{{v^2}}}{{{r_{\min }}}}$
$ \Rightarrow {r_{\min }} = \dfrac{{{v^2}}}{{{a_c}}}$
Now substituting the values of ${a_c} = 0.05 \times g$and the velocity given.
$ \Rightarrow {r_{\min }} = \dfrac{{{{\left( {60m/s} \right)}^2}}}{{\left( {0.025 \times 9.8m/{s^2}} \right)}}$
$ \Rightarrow {r_{\min }} = 7346.9m$
Hence the minimum radius of curvature that can be tolerated by the track is
$\therefore {r_{\min }} = 7.35km$.
(B) In the second subpart, it is given that the radius of curvature is $1km$ and we have to calculate the speed of the train at this radius, hence using the same formula of centripetal acceleration which is given as
${a_c} = \dfrac{{{v^2}}}{{{r_{\min }}}}$
Which in terms of speed is given as
${v^2} = {a_c} \times r$
$ \Rightarrow v = \sqrt {{a_c} \times r} $
Now substituting the value of ${a_c} = 0.05 \times g$and $r = 1km = 1000m$, hence
$ \Rightarrow v = \sqrt {0.05 \times 9.8 \times 1000} $
$ \Rightarrow v = \sqrt {490} = 22.135m/s$
$\therefore v \approx 80km/h$
Hence the speed at which the train will go around the given curve of the radius $1km$ is given $v = 80km/h$.
Note: To solve this type of question one should be ensured to use the proper units. In this given question we first convert the given units in the CGS system which is in $m/s$ then again for the answer we again convert it into the MKS system $km/h$.
Formula used:
The centripetal acceleration
${a_c} = \dfrac{{{v^2}}}{r}$
Where $v$ is the speed and $r$ is the radius of curvature.
Complete step-by-step solution
In this question, the scheduled average speed of the train is given as $216km/h$, hence
$ \Rightarrow v = 216km/h$
Now we have to change the unit into the $m/s$for our convenience, therefore
$ \Rightarrow v = 216 \times \dfrac{{1000}}{{3600}}m/s$
$ \Rightarrow v = 216 \times \dfrac{5}{{18}}m/s$
$\therefore v = 60m/s$
Now we will try to solve the given subparts one by one.
(A) In this subpart, it is given that the maximum magnitude of the acceleration experienced by the passengers is $0.05g$, where $g = 9.8m/{s^2}$which is the gravitational acceleration.
Now using these given values we will try to find the minimum radius of curvature which can be tolerated by the track. Hence we will consider the formula of centripetal acceleration ${a_c}$.
${a_c} = \dfrac{{{v^2}}}{{{r_{\min }}}}$
$ \Rightarrow {r_{\min }} = \dfrac{{{v^2}}}{{{a_c}}}$
Now substituting the values of ${a_c} = 0.05 \times g$and the velocity given.
$ \Rightarrow {r_{\min }} = \dfrac{{{{\left( {60m/s} \right)}^2}}}{{\left( {0.025 \times 9.8m/{s^2}} \right)}}$
$ \Rightarrow {r_{\min }} = 7346.9m$
Hence the minimum radius of curvature that can be tolerated by the track is
$\therefore {r_{\min }} = 7.35km$.
(B) In the second subpart, it is given that the radius of curvature is $1km$ and we have to calculate the speed of the train at this radius, hence using the same formula of centripetal acceleration which is given as
${a_c} = \dfrac{{{v^2}}}{{{r_{\min }}}}$
Which in terms of speed is given as
${v^2} = {a_c} \times r$
$ \Rightarrow v = \sqrt {{a_c} \times r} $
Now substituting the value of ${a_c} = 0.05 \times g$and $r = 1km = 1000m$, hence
$ \Rightarrow v = \sqrt {0.05 \times 9.8 \times 1000} $
$ \Rightarrow v = \sqrt {490} = 22.135m/s$
$\therefore v \approx 80km/h$
Hence the speed at which the train will go around the given curve of the radius $1km$ is given $v = 80km/h$.
Note: To solve this type of question one should be ensured to use the proper units. In this given question we first convert the given units in the CGS system which is in $m/s$ then again for the answer we again convert it into the MKS system $km/h$.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

Common Ion Effect and Its Application for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power

JEE Main Chemistry Question Paper with Answer Keys and Solutions

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
