![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The force acting on a point charge due to an electric dipole depends upon:
(a) \[F \propto \dfrac{1}{r}\]
(b) \[F \propto \dfrac{1}{{{2^2}}}\]
(c) \[F \propto \dfrac{1}{{{r^3}}}\]
(d) \[F \propto \dfrac{1}{{{r^4}}}\]
Answer
124.8k+ views
Hint: We are asked to find the relation between the force acting on a point charge due to a dipole and the its relation with the dipole. We can start by writing down the formula for the electric field due to an electric dipole and use the relation between electric field and electric force and establish a relation between electric force and distance to find our solution.
Formulas used:
1. The electric field due to an electric dipole is given by the formula,
\[E \propto \dfrac{1}{{{r^3}}}\]
We use this formula as there are two ways of finding the electric field due to an electric dipole. They are along the axis of the electric dipole and perpendicular to it. to the dipole. In either of the cases the end result of proportionality is the same.
2. The relation between electric field and electric force is given by the formula,
\[F = Eq\]
Where \[q\] is the charge
Complete answer:
Let us start by writing down the relation between electric field due to an electric dipole. Which is given by,
\[E \propto \dfrac{1}{{{r^3}}}\]
Now the relation between electric field and electric force is to be noted and it is given by,
\[F = Eq\]
From the two equations above we can conclude that,
\[\dfrac{F}{q} \propto \dfrac{1}{{{r^3}}}\]
Since the charge is also a constant in an electric dipole, we can rewrite the above equation as follows,
\[F \propto \dfrac{1}{{{r^3}}}\]
Which implies that the correct answer is option (c) \[F \propto \dfrac{1}{{{r^3}}}\].
Note: An electric dipole is an arrangement of two charges of equal but opposite magnitudes separated by a distance. An example of an electric dipole is shown below where ‘q’ is the charge.
![](https://www.vedantu.com/question-sets/89f6e3d2-4ed6-4473-b639-79a2d5efc8fd4452906705980027083.png)
Formulas used:
1. The electric field due to an electric dipole is given by the formula,
\[E \propto \dfrac{1}{{{r^3}}}\]
We use this formula as there are two ways of finding the electric field due to an electric dipole. They are along the axis of the electric dipole and perpendicular to it. to the dipole. In either of the cases the end result of proportionality is the same.
2. The relation between electric field and electric force is given by the formula,
\[F = Eq\]
Where \[q\] is the charge
Complete answer:
Let us start by writing down the relation between electric field due to an electric dipole. Which is given by,
\[E \propto \dfrac{1}{{{r^3}}}\]
Now the relation between electric field and electric force is to be noted and it is given by,
\[F = Eq\]
From the two equations above we can conclude that,
\[\dfrac{F}{q} \propto \dfrac{1}{{{r^3}}}\]
Since the charge is also a constant in an electric dipole, we can rewrite the above equation as follows,
\[F \propto \dfrac{1}{{{r^3}}}\]
Which implies that the correct answer is option (c) \[F \propto \dfrac{1}{{{r^3}}}\].
Note: An electric dipole is an arrangement of two charges of equal but opposite magnitudes separated by a distance. An example of an electric dipole is shown below where ‘q’ is the charge.
![](https://www.vedantu.com/question-sets/89f6e3d2-4ed6-4473-b639-79a2d5efc8fd4452906705980027083.png)
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)