Answer
Verified
99.9k+ views
Hint: The equivalent spring constant of the system of springs is the single value of the spring constant which will be having same effect as the combination of the springs. So, the combination of the springs can be replaced by a single spring which is having spring constant equivalent to the combination of those springs.
Formula used:
\[{K_{eq}} = {k_1} + {k_2} + {k_3} + \ldots + {k_n}\], the formula for the equivalent spring constants when n springs are connected in parallel with spring constants \[{k_1},{k_2},{k_3} \ldots \ldots \]
\[\dfrac{1}{{{K_{eq}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} + \dfrac{1}{{{k_3}}} + \ldots + \dfrac{1}{{{k_n}}}\], the formula for the equivalent spring constants when n springs are connected in series with spring constants \[{k_1},{k_2},{k_3} \ldots \ldots \]
Complete step by step solution:
Fig: The spring mass system
When we take a point at the junction of the two given springs and displace it in either direction, left or right; we observe that the displacement in both the springs are same as the displacement made at the joint of the springs.
Hence, the springs with spring constants \[{k_1}\] and \[{k_2}\]are connected in parallel with each other. So the equivalent of these two springs will be calculated using formula for the equivalent spring constant when the springs are connected in parallel,
Let the equivalent spring constant of the two springs with spring constants\[{k_1}\]and \[{k_2}\]is \[{k_{eq}}\],
Using the formula, we get
\[{k_{eq}} = {k_1} + {k_2}\]
So, the equivalent spring constant of the given spring system is \[{k_1} + {k_2}\]
Therefore, the correct option is (C).
Note: We should be careful while identifying the type of combinations the spring has. The best way to decide whether the combination is series or parallel, we displaces the joint. If the combination is in parallel then the change in length of the springs will be same otherwise the combination will be series.
Formula used:
\[{K_{eq}} = {k_1} + {k_2} + {k_3} + \ldots + {k_n}\], the formula for the equivalent spring constants when n springs are connected in parallel with spring constants \[{k_1},{k_2},{k_3} \ldots \ldots \]
\[\dfrac{1}{{{K_{eq}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}} + \dfrac{1}{{{k_3}}} + \ldots + \dfrac{1}{{{k_n}}}\], the formula for the equivalent spring constants when n springs are connected in series with spring constants \[{k_1},{k_2},{k_3} \ldots \ldots \]
Complete step by step solution:
Fig: The spring mass system
When we take a point at the junction of the two given springs and displace it in either direction, left or right; we observe that the displacement in both the springs are same as the displacement made at the joint of the springs.
Hence, the springs with spring constants \[{k_1}\] and \[{k_2}\]are connected in parallel with each other. So the equivalent of these two springs will be calculated using formula for the equivalent spring constant when the springs are connected in parallel,
Let the equivalent spring constant of the two springs with spring constants\[{k_1}\]and \[{k_2}\]is \[{k_{eq}}\],
Using the formula, we get
\[{k_{eq}} = {k_1} + {k_2}\]
So, the equivalent spring constant of the given spring system is \[{k_1} + {k_2}\]
Therefore, the correct option is (C).
Note: We should be careful while identifying the type of combinations the spring has. The best way to decide whether the combination is series or parallel, we displaces the joint. If the combination is in parallel then the change in length of the springs will be same otherwise the combination will be series.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main