The formula of the kinetic mass of a photon is? Where h is Planck’s constant,$\upsilon $ is the frequency of the photon and c is the speed.
(A) $\dfrac{{h\upsilon }}{c}$
(B) $\dfrac{{h\upsilon }}{{{c^2}}}$
(C) $\dfrac{{hc}}{\upsilon }$
(D) $\dfrac{{{c^2}}}{{h\upsilon }}$
Answer
Verified
116.4k+ views
Hint The mass and energy are interchangeable according to Einstein’s special theory of relativity. The equation is given as $E = m{c^2}$ where, $m$ is the mass and $c$ is the speed of light. And the equation connecting Planck’s constant and the energy is the Planck’s equation of energy which is given as $E = h\upsilon $ , Where $h$ is the Planck’s constant and $\upsilon $ is the frequency of the photon.
Complete Step by step solution
Take Einstein’s equation of special relativity,
$E = m{c^2}$ Where, $m$ is the mass and $c$ is the speed of light.
Also consider the Planck’s equation of energy which is given as $E = h\upsilon $ , Where $h$ is the Planck’s constant and $\upsilon $ is the frequency of the photon.
Combining these two equations, we get
$
m{c^2} = h\upsilon \\
m = \dfrac{{h\upsilon }}{{{c^2}}} \\
$
We know that the proton has no rest mass. But the effective mass in the above expression says that the effective mass varies according to the frequency of the photon. Also the above expression can be explained in the particle nature that each photon is having mass $m = \dfrac{{h\upsilon }}{{{c^2}}}$are travelling at the speed of light. The photon having higher frequency and lower wavelength will have higher effective mass which implies that it would have higher energy. This is according to the mass energy conversion described in Einstein's special theory of Relativity.
The correct answer is Option B.
Note Since the protons have no mass, the term “Kinetic mass” relates to the kinetic energy of the photon. The energy of the photon is given as $E = \dfrac{{hc}}{\lambda }$ where $\lambda $ is the wavelength of the photon.
Comparing with the Einstein’s special theory of relativity,
$
m{c^2} = \dfrac{{hc}}{\lambda } \\
m = \dfrac{h}{{c\lambda }} \\
$
This is also the kinetic mass of the photon.
Complete Step by step solution
Take Einstein’s equation of special relativity,
$E = m{c^2}$ Where, $m$ is the mass and $c$ is the speed of light.
Also consider the Planck’s equation of energy which is given as $E = h\upsilon $ , Where $h$ is the Planck’s constant and $\upsilon $ is the frequency of the photon.
Combining these two equations, we get
$
m{c^2} = h\upsilon \\
m = \dfrac{{h\upsilon }}{{{c^2}}} \\
$
We know that the proton has no rest mass. But the effective mass in the above expression says that the effective mass varies according to the frequency of the photon. Also the above expression can be explained in the particle nature that each photon is having mass $m = \dfrac{{h\upsilon }}{{{c^2}}}$are travelling at the speed of light. The photon having higher frequency and lower wavelength will have higher effective mass which implies that it would have higher energy. This is according to the mass energy conversion described in Einstein's special theory of Relativity.
The correct answer is Option B.
Note Since the protons have no mass, the term “Kinetic mass” relates to the kinetic energy of the photon. The energy of the photon is given as $E = \dfrac{{hc}}{\lambda }$ where $\lambda $ is the wavelength of the photon.
Comparing with the Einstein’s special theory of relativity,
$
m{c^2} = \dfrac{{hc}}{\lambda } \\
m = \dfrac{h}{{c\lambda }} \\
$
This is also the kinetic mass of the photon.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics