Answer
Verified
99.9k+ views
Hint: From the graph it is evident that the current remains the same in both the time stamps. So we can just use the current formula to calculate the charges in both the cases and then divide them to obtain the ratio.
Formulas used
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
Complete step by step answer
Electric current is defined as the flow of electric charge (electrons) per unit time through a conducting medium. Its SI unit is Ampere and is symbolized by $A$. It is measured using a device called the ammeter.
The flow of electric current is due to the stream of charged particles such as electrons from a region of higher potential to a region of lower potential. This means that current can only flow through a medium when there is a potential difference present.
Now, we can solve the question given by using the definition of current which gives us the relation,
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
On the graph given above we see that the value of current is constant from time $t = 7.5s$to $15s$ and beyond.
So, using the current equation we can write,
${q_1} = 6 \times 7.5$$C$ where ${q_1}$is the charge at $t = 7.5s$
Similarly,
${q_2} = 6 \times 15C$ where ${q_2}$ is the charge at $t = 15s$
Dividing these two equations we get,
$\dfrac{{{q_1}}}{{{q_2}}} = \dfrac{{6 \times 7.5}}{{6 \times 15}}$
$ \Rightarrow \dfrac{{{q_1}}}{{{q_2}}} = \dfrac{1}{2}$
${q_1}:{q_2} = 1:2$
Therefore, the correct option is B.
Note: In a conductor, the total current is due to the flow of electrons which are negative charge carriers. However, in case of semiconductors, the flow of current is due to both positive and negative carriers. Unlike conductors, semiconductors can only conduct electricity at very high temperatures. This is due to the fact that semiconductors have a negative coefficient of resistance with temperature. Which means that their resistance decreases with increase in temperature.
Formulas used
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
Complete step by step answer
Electric current is defined as the flow of electric charge (electrons) per unit time through a conducting medium. Its SI unit is Ampere and is symbolized by $A$. It is measured using a device called the ammeter.
The flow of electric current is due to the stream of charged particles such as electrons from a region of higher potential to a region of lower potential. This means that current can only flow through a medium when there is a potential difference present.
Now, we can solve the question given by using the definition of current which gives us the relation,
$i = \dfrac{q}{t}$ where $i$ is the current flowing through the conductor, $q$ is the charge and $t$ is the time taken.
On the graph given above we see that the value of current is constant from time $t = 7.5s$to $15s$ and beyond.
So, using the current equation we can write,
${q_1} = 6 \times 7.5$$C$ where ${q_1}$is the charge at $t = 7.5s$
Similarly,
${q_2} = 6 \times 15C$ where ${q_2}$ is the charge at $t = 15s$
Dividing these two equations we get,
$\dfrac{{{q_1}}}{{{q_2}}} = \dfrac{{6 \times 7.5}}{{6 \times 15}}$
$ \Rightarrow \dfrac{{{q_1}}}{{{q_2}}} = \dfrac{1}{2}$
${q_1}:{q_2} = 1:2$
Therefore, the correct option is B.
Note: In a conductor, the total current is due to the flow of electrons which are negative charge carriers. However, in case of semiconductors, the flow of current is due to both positive and negative carriers. Unlike conductors, semiconductors can only conduct electricity at very high temperatures. This is due to the fact that semiconductors have a negative coefficient of resistance with temperature. Which means that their resistance decreases with increase in temperature.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main