
The hybridization and shape of $N{H}_{2}^{-}$ ion are:
(a) $s{p}^{2}$ and angular
(b) $s{p}^{3}$ and angular
(c) $s{p}^{3}$ and linear
(d) $sp$ and linear
Answer
132.9k+ views
Hint: Hybridization is the notion that newly hybridized orbitals are formed from the fusion of atomic orbitals. This in turn, influences the molecular bonding and geometry properties of the compound.
Complete answer:
* The energy of the hybridized orbitals are lower than the energy compared to their separated, unhybridized counterparts. Due to this more stable compounds are formed.
* The hybridization also has a greater role in determining the shape or the molecular geometry of the compound. the shapes can be: linear, angular or V or bent, tetrahedral, seesaw, square pyramidal and many more.
* Hybridization is an expansion of valence bond theory.
* The Hybridization of any compound can be calculated as follows:
* Now, in the case of $N{H}_{2}^{-}$, V=5, M=2, A=1. Substituting these values in the above equation, we get,
Therefore, the hybridization of $N{H}_{2}^{-}$ is $s{p}^{3}$ and has the shape bent or angular .
Thus, the correct option is (b).
Note: In the above mentioned case the compound does not have any cationic charge and therefore, C=0 but has an anionic charge thus A=1. And note that the shape of $N{H}_{2}^{-}$ is an angular shape even though the hybridization is $s{p}^{3}$, this is due to the lone pair-bonding pair repulsion which as a result pushes the two bonding pairs closer together.
Complete answer:
* The energy of the hybridized orbitals are lower than the energy compared to their separated, unhybridized counterparts. Due to this more stable compounds are formed.
* The hybridization also has a greater role in determining the shape or the molecular geometry of the compound. the shapes can be: linear, angular or V or bent, tetrahedral, seesaw, square pyramidal and many more.
* Hybridization is an expansion of valence bond theory.
* The Hybridization of any compound can be calculated as follows:
$H\quad =\quad \cfrac { 1 }{ 2 } \left[ V+M-C+A \right]$
where,
H = Number of orbitals involved in hybridization.
V = Valence electrons of the central atom.
M = Number of monovalent atoms linked to the central atom.
C = Charge of the cation.
A = Charge of the anion.
* Now, in the case of $N{H}_{2}^{-}$, V=5, M=2, A=1. Substituting these values in the above equation, we get,
$H\quad =\quad \cfrac { 1 }{ 2 } \left[ 5+2+1 \right]$
$\implies H = 4$
Therefore, the hybridization of $N{H}_{2}^{-}$ is $s{p}^{3}$ and has the shape bent or angular .
Thus, the correct option is (b).
Note: In the above mentioned case the compound does not have any cationic charge and therefore, C=0 but has an anionic charge thus A=1. And note that the shape of $N{H}_{2}^{-}$ is an angular shape even though the hybridization is $s{p}^{3}$, this is due to the lone pair-bonding pair repulsion which as a result pushes the two bonding pairs closer together.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
