The incident intensity on a horizontal surface at sea level from the sun is about 1 $KWm^{-2}$. Assuming that 50 percent of this intensity is reflecting and 50 per cent is absorbed, determine the radiation pressure on this horizontal surface (in pascals).
A) $8.2 \times 10^{-2}$
B) $5 \times 10^{-6}$
C) $3 \times 10^{-5}$
D) $6 \times 10^{-5}$
Answer
Verified
116.1k+ views
Hint: Radiation pressure exerted because of momentum and electromagnetic field.
Radiation pressure is given as:
$P = \dfrac{{\left( {1 + e} \right)I}}{c}$ (P is the radiation pressure, e is the percentage of light intensity reflected and I is the incident intensity, c is the speed of light).
Using the above relation we will find the radiation pressure.
Complete step by step solution:
Let’s first discuss radiation pressure and its effect and then we do the calculation part.
Radiation pressure, the pressure on a surface resulting from electromagnetic radiation which has an effect on it that is a result from the momentum carried out by radiation. Radiation pressure is doubled if the radiation is reflected rather than absorbed.
A very simple definition of radiation pressure is that electromagnetic pressure exerts a minute pressure on everything it witnesses in its path is called radiation pressure. When light is reflected on a mirror is subject to some radiation pressure.
Let us now do the calculation part of the problem.
$ \Rightarrow P = \dfrac{{\left( {1 + e} \right)I}}{c}$...............(1)
We will substitute the numerical values of each term in equation 1, we will take the value of c velocity of light as 3$ \times 10^8$.
$
\Rightarrow P = \dfrac{{\left( {1 + 0.5} \right)1000}}{{3 \times {{10}^8}}} \\
\Rightarrow P = \dfrac{{1500}}{{3 \times {{10}^8}}} \\
$(e is given 50% which is 0.5)
$ \Rightarrow P = 5 \times {10^{ - 6}}$ Pascal
Note: We have various applications of radiation pressure which includes laser; solar sails have been developed for the propulsion of the spacecraft, beam powered propulsion of spacecraft may be realised with high power lasers. Light forces have been achieved which strongly affects the dynamics of small particles.
Radiation pressure is given as:
$P = \dfrac{{\left( {1 + e} \right)I}}{c}$ (P is the radiation pressure, e is the percentage of light intensity reflected and I is the incident intensity, c is the speed of light).
Using the above relation we will find the radiation pressure.
Complete step by step solution:
Let’s first discuss radiation pressure and its effect and then we do the calculation part.
Radiation pressure, the pressure on a surface resulting from electromagnetic radiation which has an effect on it that is a result from the momentum carried out by radiation. Radiation pressure is doubled if the radiation is reflected rather than absorbed.
A very simple definition of radiation pressure is that electromagnetic pressure exerts a minute pressure on everything it witnesses in its path is called radiation pressure. When light is reflected on a mirror is subject to some radiation pressure.
Let us now do the calculation part of the problem.
$ \Rightarrow P = \dfrac{{\left( {1 + e} \right)I}}{c}$...............(1)
We will substitute the numerical values of each term in equation 1, we will take the value of c velocity of light as 3$ \times 10^8$.
$
\Rightarrow P = \dfrac{{\left( {1 + 0.5} \right)1000}}{{3 \times {{10}^8}}} \\
\Rightarrow P = \dfrac{{1500}}{{3 \times {{10}^8}}} \\
$(e is given 50% which is 0.5)
$ \Rightarrow P = 5 \times {10^{ - 6}}$ Pascal
Note: We have various applications of radiation pressure which includes laser; solar sails have been developed for the propulsion of the spacecraft, beam powered propulsion of spacecraft may be realised with high power lasers. Light forces have been achieved which strongly affects the dynamics of small particles.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025