
The locus of point of intersection of tangents to the parabolas \[{y^2} = 4\left( {x + 1} \right)\]and \[{y^2} = 8\left( {x + 2} \right)\] which are perpendicular to each other is
(a)$x + 7 = 0$ (b) $x - y = 4$
(c)$x + 3 = 0$ (d)$y - x = 12$
Answer
232.8k+ views
Hint: Find the general equation of tangent at any point on the parabola using the slope-point form$\left( {y - y_1} \right) = m\left( {x - x_1} \right)$. Compare that with the given parabola equations to find the point of tangency for both the tangents. Use the condition for the two tangents to be perpendicular to find the locus of the point of intersection.
The given equations are
\[{y^2} = 4\left( {x + 1} \right)\] …(1)
\[{y^2} = 8\left( {x + 2} \right)\] …(2)
The general form of a parabola with its vertex at the origin and its axis parallel to the x-axis is ${y^2} = 4ax$ …(3)
Point of tangency is given by $\left( {a{t^2},2at} \right)$
We get the slope by differentiating with respect to$x$.
So, let us differentiate equation (3) to find its slope and use the slope point form to find the equation of tangent at$\left( {a{t^2},2at} \right)$.
$
{y^2} = 4ax \\
2y\dfrac{{dy}}{{dx}} = 4a \\
\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} \\
$
At point$\left( {a{t^2},2at} \right)$,$y = 2at$. Substitute to get slope$m$from the differentiated value.
$
\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{{2at}} \\
m = \dfrac{1}{t} \\
$
Slope Point form to find the equation of a line passing through a point $\left( {x_1,y_1} \right)$ with a slope$m$is written as $\left( {y - y_1} \right) = m\left( {x - x_1} \right)$
So, general equation of a tangent line at point $\left( {a{t^2},2at} \right)$and with slope $m = \dfrac{1}{t}$ is given by
$
y - 2at = \dfrac{1}{t}\left( {x - a{t^2}} \right) \\
ty - 2a{t^2} = x - a{t^2} \\
$
$ty = x + a{t^2}$ …(5)
From equation (1), comparing with the general form of parabola in equation (3), we get
$a = 4,x = x + 1$ …(6)
So the point of tangency for (1) is $\left( {t{1^2},2t_1} \right)$ …(7)
Similarly from equation (2),
$a = 8,x = x + 2$ …(8)
So the point of tangency for (2) is $\left( {2t{2^2},4t_2} \right)$ …(9)
For finding tangent equation for parabola in equation (1) substitute (6) and (7) in (5)
$t_1y = \left( {x + 1} \right) + t{1^2}$
$y = \dfrac{x}{{t_1}} + \left( {t_1 + \dfrac{1}{{t_2}}} \right)$ …(10)
For finding tangent equation for parabola in equation (2) substitute (8) and (9) in (5)
$t_2y = \left( {x + 2} \right) + 2t{2^2}$
$y = \dfrac{x}{{t_2}} + 2\left( {t_2 + \dfrac{1}{{t_2}}} \right)$ …(11)
The tangents (10) and (11) are perpendicular (given)
So, the product of their slope is -1.
If $m_1,m_2$are their respective slope,
$m_1m_2 = - 1$
$
m_1 = \dfrac{1}{{t_1}},m_2 = \dfrac{1}{{t_2}} \\
\dfrac{1}{{t_1}}\dfrac{1}{{t_2}} = - 1 \\
t_1t_2 = - 1 \\
$
Equating (10) and (11) to find their point of intersection and substituting \[t_1t_2 = - 1\]
$
\dfrac{x}{{t_1}} + \left( {t_1 + \dfrac{1}{{t_1}}} \right) = \dfrac{x}{{t_2}} + 2\left( {t_2 + \dfrac{1}{{t_2}}} \right) \\
x\left( {\dfrac{1}{{t_1}} - \dfrac{1}{{t_2}}} \right) = 2t_2 + \dfrac{2}{{t_2}} - t_1 - \dfrac{1}{{t_1}} \\
x\left( {\dfrac{{t_2 - t_1}}{{t_1t_2}}} \right) = \dfrac{{2t{2^2}t_1 + 2t_1 - t{1^2}t_2 - t_2}}{{t_1t_2}} \\
x\left( {t_2 - t_1} \right) = - 2t_2 + 2t_1 + t_1 - t_2 \\
x\left( {t_2 - t_1} \right) = - 3\left( {t_2 - t_1} \right) \\
x = - 3 \\
x + 3 = 0 \\
$
Hence the locus of the point of intersection of the tangents is \[x + 3 = 0\]
Hence, the correct answer is option (c).
Note: We are finding the equation of tangents for both the given parabolas and finding their point of intersection with the condition that they are perpendicular, to find the locus of that point of intersection. We can also do this without finding the general equation of tangent and then substituting. Instead, we can directly find the equation of tangents for each parabola and then equate it to find the point of intersection.
The given equations are
\[{y^2} = 4\left( {x + 1} \right)\] …(1)
\[{y^2} = 8\left( {x + 2} \right)\] …(2)
The general form of a parabola with its vertex at the origin and its axis parallel to the x-axis is ${y^2} = 4ax$ …(3)
Point of tangency is given by $\left( {a{t^2},2at} \right)$
We get the slope by differentiating with respect to$x$.
So, let us differentiate equation (3) to find its slope and use the slope point form to find the equation of tangent at$\left( {a{t^2},2at} \right)$.
$
{y^2} = 4ax \\
2y\dfrac{{dy}}{{dx}} = 4a \\
\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} \\
$
At point$\left( {a{t^2},2at} \right)$,$y = 2at$. Substitute to get slope$m$from the differentiated value.
$
\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{{2at}} \\
m = \dfrac{1}{t} \\
$
Slope Point form to find the equation of a line passing through a point $\left( {x_1,y_1} \right)$ with a slope$m$is written as $\left( {y - y_1} \right) = m\left( {x - x_1} \right)$
So, general equation of a tangent line at point $\left( {a{t^2},2at} \right)$and with slope $m = \dfrac{1}{t}$ is given by
$
y - 2at = \dfrac{1}{t}\left( {x - a{t^2}} \right) \\
ty - 2a{t^2} = x - a{t^2} \\
$
$ty = x + a{t^2}$ …(5)
From equation (1), comparing with the general form of parabola in equation (3), we get
$a = 4,x = x + 1$ …(6)
So the point of tangency for (1) is $\left( {t{1^2},2t_1} \right)$ …(7)
Similarly from equation (2),
$a = 8,x = x + 2$ …(8)
So the point of tangency for (2) is $\left( {2t{2^2},4t_2} \right)$ …(9)
For finding tangent equation for parabola in equation (1) substitute (6) and (7) in (5)
$t_1y = \left( {x + 1} \right) + t{1^2}$
$y = \dfrac{x}{{t_1}} + \left( {t_1 + \dfrac{1}{{t_2}}} \right)$ …(10)
For finding tangent equation for parabola in equation (2) substitute (8) and (9) in (5)
$t_2y = \left( {x + 2} \right) + 2t{2^2}$
$y = \dfrac{x}{{t_2}} + 2\left( {t_2 + \dfrac{1}{{t_2}}} \right)$ …(11)
The tangents (10) and (11) are perpendicular (given)
So, the product of their slope is -1.
If $m_1,m_2$are their respective slope,
$m_1m_2 = - 1$
$
m_1 = \dfrac{1}{{t_1}},m_2 = \dfrac{1}{{t_2}} \\
\dfrac{1}{{t_1}}\dfrac{1}{{t_2}} = - 1 \\
t_1t_2 = - 1 \\
$
Equating (10) and (11) to find their point of intersection and substituting \[t_1t_2 = - 1\]
$
\dfrac{x}{{t_1}} + \left( {t_1 + \dfrac{1}{{t_1}}} \right) = \dfrac{x}{{t_2}} + 2\left( {t_2 + \dfrac{1}{{t_2}}} \right) \\
x\left( {\dfrac{1}{{t_1}} - \dfrac{1}{{t_2}}} \right) = 2t_2 + \dfrac{2}{{t_2}} - t_1 - \dfrac{1}{{t_1}} \\
x\left( {\dfrac{{t_2 - t_1}}{{t_1t_2}}} \right) = \dfrac{{2t{2^2}t_1 + 2t_1 - t{1^2}t_2 - t_2}}{{t_1t_2}} \\
x\left( {t_2 - t_1} \right) = - 2t_2 + 2t_1 + t_1 - t_2 \\
x\left( {t_2 - t_1} \right) = - 3\left( {t_2 - t_1} \right) \\
x = - 3 \\
x + 3 = 0 \\
$
Hence the locus of the point of intersection of the tangents is \[x + 3 = 0\]
Hence, the correct answer is option (c).
Note: We are finding the equation of tangents for both the given parabolas and finding their point of intersection with the condition that they are perpendicular, to find the locus of that point of intersection. We can also do this without finding the general equation of tangent and then substituting. Instead, we can directly find the equation of tangents for each parabola and then equate it to find the point of intersection.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

