The magnetic field lines due to a bar magnet are correctly shown in
A.
B.
C.
D.
Answer
Verified
123.3k+ views
Hint:
In this problem we will use the concept of magnetism of a bar magnet and the magnetic field lines of the bar magnet. A bar magnet's field lines will move from its north pole to its south pole. Field lines that begin close to a pole's borders will hang around the bar magnet longer than field lines that begin closer to the pole's centre.
Complete step by step solution:
In a bar magnet, there are two poles named ‘North-Pole’ and ‘South-Pole’ such that the magnetic field lines originate from the North pole and end at the South pole outside the magnet.
But inside a magnet, the magnet field lines start from the South pole and end at the North pole. Since options (A) and (B) do not contain magnetic field lines inside a magnet that’s why options (A) and (B) are incorrect.
Now, option (C) has magnetic lines inside a magnet but in opposite direction i.e., from North to South which is wrong, therefore, option (C) is also incorrect.
Thus, the magnetic field lines due to a bar magnet are shown as: -
Hence, the correct option is (D).
Therefore, the correct option is D.
Note:
Since this is a problem related to a uniform magnetic field and magnetic lines of forces hence, it is essential that given options must be analyzed very carefully to give a precise explanation. While writing an explanation for this kind of conceptual problem, always keep in mind to provide the exact reasons in support of your explanation.
In this problem we will use the concept of magnetism of a bar magnet and the magnetic field lines of the bar magnet. A bar magnet's field lines will move from its north pole to its south pole. Field lines that begin close to a pole's borders will hang around the bar magnet longer than field lines that begin closer to the pole's centre.
Complete step by step solution:
In a bar magnet, there are two poles named ‘North-Pole’ and ‘South-Pole’ such that the magnetic field lines originate from the North pole and end at the South pole outside the magnet.
But inside a magnet, the magnet field lines start from the South pole and end at the North pole. Since options (A) and (B) do not contain magnetic field lines inside a magnet that’s why options (A) and (B) are incorrect.
Now, option (C) has magnetic lines inside a magnet but in opposite direction i.e., from North to South which is wrong, therefore, option (C) is also incorrect.
Thus, the magnetic field lines due to a bar magnet are shown as: -
Hence, the correct option is (D).
Therefore, the correct option is D.
Note:
Since this is a problem related to a uniform magnetic field and magnetic lines of forces hence, it is essential that given options must be analyzed very carefully to give a precise explanation. While writing an explanation for this kind of conceptual problem, always keep in mind to provide the exact reasons in support of your explanation.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Charging and Discharging of Capacitor
Physics Average Value and RMS Value JEE Main 2025
Degree of Dissociation and Its Formula With Solved Example for JEE