
The mass of a specimen of a ferromagnetic material is $0.6kg$ and its density is $7.8 \times {10^3}kg/{m^3}$. If the area of hysteresis loop of alternating magnetising field of frequency $50Hz$ is $0.722MKS$ units then the hysteresis loss per second will be:
A) $277.7 \times {10^{ - 5}}joule$
B) $277.7 \times {10^{ - 6}}joule$
C) $277.7 \times {10^{ - 4}}joule$
D) $27.77 \times {10^{ - 4}}joule$
Answer
133.5k+ views
Hint:Whenever a magnetic field is present in a material or a system, then hysteresis occurs. When a ferromagnetic material is magnetized, the magnetization intensity denoted by ‘B’ lags behind the magnetic field intensity denoted by ‘H’. This process is known as hysteresis.
Complete step by step solution:
The energy that is wasted due to hysteresis in the form of heat is known as hysteresis loss. All the ferro magnetic substances undergo hysteresis. The hysteresis loss per second in the material is given by the formula
$ \Rightarrow E = \nu AVt$
Where E is the energy loss due to hysteresis
$\nu $ is the frequency
V is the volume which is the ratio of mass and volume
‘t’ is the time
$ \Rightarrow E = \nu A\dfrac{m}{\rho }t$
‘m’ is the mass and
$\rho $ is the density
Substituting the values given in the above equation and solving for energy loss
$ \Rightarrow E = 50 \times 0.722 \times \dfrac{{0.6}}{{7.8 \times {{10}^3}}} \times 1$
$E = 277.7 \times {10^{ - 5}}Joule$
The hysteresis loop per second for the ferromagnetic material will be
$E = 277.7 \times {10^{ - 5}}joule$
Option A is the right answer.
Note: It is important to note that if a ferromagnetic material is placed inside a magnetic field then due to the presence of a magnetic field, the molecules of the material get aligned in one direction and it gets magnetised. On the other hand, if the direction of the current is reversed, then the ferromagnetic material will get demagnetised. So the relationship between the magnetizing field and the intensity of magnetisation is given by using a hysteresis loop. The hysteresis loop shows the area required to complete one cycle of magnetisation and demagnetisation.
Complete step by step solution:
The energy that is wasted due to hysteresis in the form of heat is known as hysteresis loss. All the ferro magnetic substances undergo hysteresis. The hysteresis loss per second in the material is given by the formula
$ \Rightarrow E = \nu AVt$
Where E is the energy loss due to hysteresis
$\nu $ is the frequency
V is the volume which is the ratio of mass and volume
‘t’ is the time
$ \Rightarrow E = \nu A\dfrac{m}{\rho }t$
‘m’ is the mass and
$\rho $ is the density
Substituting the values given in the above equation and solving for energy loss
$ \Rightarrow E = 50 \times 0.722 \times \dfrac{{0.6}}{{7.8 \times {{10}^3}}} \times 1$
$E = 277.7 \times {10^{ - 5}}Joule$
The hysteresis loop per second for the ferromagnetic material will be
$E = 277.7 \times {10^{ - 5}}joule$
Option A is the right answer.
Note: It is important to note that if a ferromagnetic material is placed inside a magnetic field then due to the presence of a magnetic field, the molecules of the material get aligned in one direction and it gets magnetised. On the other hand, if the direction of the current is reversed, then the ferromagnetic material will get demagnetised. So the relationship between the magnetizing field and the intensity of magnetisation is given by using a hysteresis loop. The hysteresis loop shows the area required to complete one cycle of magnetisation and demagnetisation.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
