Answer
Verified
100.5k+ views
Hint: In this question, we are given the position vectors $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ of the points A, B, and C and we have to determine these position vectors are of which triangle. Start the solution by finding the magnitude of each side. And then put the values in Pythagoras theorem to check whether the triangle is right angled or not.
Formula Used:
Pythagoras theorem –
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
Magnitude of three-dimensional vector –
$Magnitude = \sqrt {{a^2} + {b^2} + {c^2}} $ where the vector is $a\widehat i + b\widehat j + c\widehat k$
Complete step by step Solution:
Given that,
Position vectors of given points A, B, C are
$\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k$
$\overrightarrow b = 2\widehat i - \widehat j + \widehat k$
$\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$
Here, we’ll find the sides of the triangle using position vectors
$AB = \left| {\overrightarrow b - \overrightarrow a } \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k - \left( {3\widehat i - 4\widehat j - 4\widehat k} \right)} \right|$
$ = \left| { - \widehat i + 3\widehat j + 5\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 5 \right)}^2}} $
$ = \sqrt {35} $
$BC = \left| {\overrightarrow c - \overrightarrow b } \right|$
$ = \left| {\widehat i - 3\widehat j - 5\widehat k - \left( {2\widehat i - \widehat j + \widehat k} \right)} \right|$
$ = \left| { - \widehat i - 2\widehat j - 6\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 6} \right)}^2}} $
$ = \sqrt {41} $
$CA = \left| {\overrightarrow a - \overrightarrow c } \right|$
$ = \left| {3\widehat i - 4\widehat j - 4\widehat k - \left( {\widehat i - 3\widehat j - 5\widehat k} \right)} \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k} \right|$
$ = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
$ = \sqrt 6 $
From the above required values,
${\left( {BC} \right)^2} = {\left( {AB} \right)^2} + {\left( {CA} \right)^2}$
${\left( {\sqrt {41} } \right)^2} = {\left( {\sqrt {35} } \right)^2} + {\left( {\sqrt 6 } \right)^2}$
$41 = 35 + 6$
$41 = 41$
Here, the left-hand side is equal to the right-hand side..
It implies that the side of triangle satisfies the Pythagoras theorem i.e., ${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
As we know, Right angle triangle is the triangle that follows Pythagoras theorem
Therefore, the points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ are the vertices of the Right-angled triangle.
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of Triangle. Students must know that to check the triangle is right- angled always use Pythagoras theorem if the sides satisfy the theorem it means the triangle is right-angled. For equilateral no need to do anything all sides will be equal and for isosceles any two sides will be equal.
Formula Used:
Pythagoras theorem –
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
Magnitude of three-dimensional vector –
$Magnitude = \sqrt {{a^2} + {b^2} + {c^2}} $ where the vector is $a\widehat i + b\widehat j + c\widehat k$
Complete step by step Solution:
Given that,
Position vectors of given points A, B, C are
$\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k$
$\overrightarrow b = 2\widehat i - \widehat j + \widehat k$
$\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$
Here, we’ll find the sides of the triangle using position vectors
$AB = \left| {\overrightarrow b - \overrightarrow a } \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k - \left( {3\widehat i - 4\widehat j - 4\widehat k} \right)} \right|$
$ = \left| { - \widehat i + 3\widehat j + 5\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 5 \right)}^2}} $
$ = \sqrt {35} $
$BC = \left| {\overrightarrow c - \overrightarrow b } \right|$
$ = \left| {\widehat i - 3\widehat j - 5\widehat k - \left( {2\widehat i - \widehat j + \widehat k} \right)} \right|$
$ = \left| { - \widehat i - 2\widehat j - 6\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 6} \right)}^2}} $
$ = \sqrt {41} $
$CA = \left| {\overrightarrow a - \overrightarrow c } \right|$
$ = \left| {3\widehat i - 4\widehat j - 4\widehat k - \left( {\widehat i - 3\widehat j - 5\widehat k} \right)} \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k} \right|$
$ = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
$ = \sqrt 6 $
From the above required values,
${\left( {BC} \right)^2} = {\left( {AB} \right)^2} + {\left( {CA} \right)^2}$
${\left( {\sqrt {41} } \right)^2} = {\left( {\sqrt {35} } \right)^2} + {\left( {\sqrt 6 } \right)^2}$
$41 = 35 + 6$
$41 = 41$
Here, the left-hand side is equal to the right-hand side..
It implies that the side of triangle satisfies the Pythagoras theorem i.e., ${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
As we know, Right angle triangle is the triangle that follows Pythagoras theorem
Therefore, the points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ are the vertices of the Right-angled triangle.
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of Triangle. Students must know that to check the triangle is right- angled always use Pythagoras theorem if the sides satisfy the theorem it means the triangle is right-angled. For equilateral no need to do anything all sides will be equal and for isosceles any two sides will be equal.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main