
The points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ respectively form the vertices of a?
1. Right angled triangle
2. Isosceles triangle
3. Equilateral triangle
4. None of these
Answer
138.9k+ views
Hint: In this question, we are given the position vectors $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ of the points A, B, and C and we have to determine these position vectors are of which triangle. Start the solution by finding the magnitude of each side. And then put the values in Pythagoras theorem to check whether the triangle is right angled or not.
Formula Used:
Pythagoras theorem –
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
Magnitude of three-dimensional vector –
$Magnitude = \sqrt {{a^2} + {b^2} + {c^2}} $ where the vector is $a\widehat i + b\widehat j + c\widehat k$
Complete step by step Solution:
Given that,
Position vectors of given points A, B, C are
$\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k$
$\overrightarrow b = 2\widehat i - \widehat j + \widehat k$
$\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$
Here, we’ll find the sides of the triangle using position vectors
$AB = \left| {\overrightarrow b - \overrightarrow a } \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k - \left( {3\widehat i - 4\widehat j - 4\widehat k} \right)} \right|$
$ = \left| { - \widehat i + 3\widehat j + 5\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 5 \right)}^2}} $
$ = \sqrt {35} $
$BC = \left| {\overrightarrow c - \overrightarrow b } \right|$
$ = \left| {\widehat i - 3\widehat j - 5\widehat k - \left( {2\widehat i - \widehat j + \widehat k} \right)} \right|$
$ = \left| { - \widehat i - 2\widehat j - 6\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 6} \right)}^2}} $
$ = \sqrt {41} $
$CA = \left| {\overrightarrow a - \overrightarrow c } \right|$
$ = \left| {3\widehat i - 4\widehat j - 4\widehat k - \left( {\widehat i - 3\widehat j - 5\widehat k} \right)} \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k} \right|$
$ = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
$ = \sqrt 6 $
From the above required values,
${\left( {BC} \right)^2} = {\left( {AB} \right)^2} + {\left( {CA} \right)^2}$
${\left( {\sqrt {41} } \right)^2} = {\left( {\sqrt {35} } \right)^2} + {\left( {\sqrt 6 } \right)^2}$
$41 = 35 + 6$
$41 = 41$
Here, the left-hand side is equal to the right-hand side..
It implies that the side of triangle satisfies the Pythagoras theorem i.e., ${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
As we know, Right angle triangle is the triangle that follows Pythagoras theorem
Therefore, the points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ are the vertices of the Right-angled triangle.
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of Triangle. Students must know that to check the triangle is right- angled always use Pythagoras theorem if the sides satisfy the theorem it means the triangle is right-angled. For equilateral no need to do anything all sides will be equal and for isosceles any two sides will be equal.
Formula Used:
Pythagoras theorem –
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
Magnitude of three-dimensional vector –
$Magnitude = \sqrt {{a^2} + {b^2} + {c^2}} $ where the vector is $a\widehat i + b\widehat j + c\widehat k$
Complete step by step Solution:
Given that,
Position vectors of given points A, B, C are
$\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k$
$\overrightarrow b = 2\widehat i - \widehat j + \widehat k$
$\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$
Here, we’ll find the sides of the triangle using position vectors
$AB = \left| {\overrightarrow b - \overrightarrow a } \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k - \left( {3\widehat i - 4\widehat j - 4\widehat k} \right)} \right|$
$ = \left| { - \widehat i + 3\widehat j + 5\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 5 \right)}^2}} $
$ = \sqrt {35} $
$BC = \left| {\overrightarrow c - \overrightarrow b } \right|$
$ = \left| {\widehat i - 3\widehat j - 5\widehat k - \left( {2\widehat i - \widehat j + \widehat k} \right)} \right|$
$ = \left| { - \widehat i - 2\widehat j - 6\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 6} \right)}^2}} $
$ = \sqrt {41} $
$CA = \left| {\overrightarrow a - \overrightarrow c } \right|$
$ = \left| {3\widehat i - 4\widehat j - 4\widehat k - \left( {\widehat i - 3\widehat j - 5\widehat k} \right)} \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k} \right|$
$ = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
$ = \sqrt 6 $
From the above required values,
${\left( {BC} \right)^2} = {\left( {AB} \right)^2} + {\left( {CA} \right)^2}$
${\left( {\sqrt {41} } \right)^2} = {\left( {\sqrt {35} } \right)^2} + {\left( {\sqrt 6 } \right)^2}$
$41 = 35 + 6$
$41 = 41$
Here, the left-hand side is equal to the right-hand side..
It implies that the side of triangle satisfies the Pythagoras theorem i.e., ${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
As we know, Right angle triangle is the triangle that follows Pythagoras theorem
Therefore, the points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ are the vertices of the Right-angled triangle.
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of Triangle. Students must know that to check the triangle is right- angled always use Pythagoras theorem if the sides satisfy the theorem it means the triangle is right-angled. For equilateral no need to do anything all sides will be equal and for isosceles any two sides will be equal.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Physics Average Value and RMS Value JEE Main 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
