
The points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ respectively form the vertices of a?
1. Right angled triangle
2. Isosceles triangle
3. Equilateral triangle
4. None of these
Answer
127.8k+ views
Hint: In this question, we are given the position vectors $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ of the points A, B, and C and we have to determine these position vectors are of which triangle. Start the solution by finding the magnitude of each side. And then put the values in Pythagoras theorem to check whether the triangle is right angled or not.
Formula Used:
Pythagoras theorem –
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
Magnitude of three-dimensional vector –
$Magnitude = \sqrt {{a^2} + {b^2} + {c^2}} $ where the vector is $a\widehat i + b\widehat j + c\widehat k$
Complete step by step Solution:
Given that,
Position vectors of given points A, B, C are
$\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k$
$\overrightarrow b = 2\widehat i - \widehat j + \widehat k$
$\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$
Here, we’ll find the sides of the triangle using position vectors
$AB = \left| {\overrightarrow b - \overrightarrow a } \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k - \left( {3\widehat i - 4\widehat j - 4\widehat k} \right)} \right|$
$ = \left| { - \widehat i + 3\widehat j + 5\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 5 \right)}^2}} $
$ = \sqrt {35} $
$BC = \left| {\overrightarrow c - \overrightarrow b } \right|$
$ = \left| {\widehat i - 3\widehat j - 5\widehat k - \left( {2\widehat i - \widehat j + \widehat k} \right)} \right|$
$ = \left| { - \widehat i - 2\widehat j - 6\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 6} \right)}^2}} $
$ = \sqrt {41} $
$CA = \left| {\overrightarrow a - \overrightarrow c } \right|$
$ = \left| {3\widehat i - 4\widehat j - 4\widehat k - \left( {\widehat i - 3\widehat j - 5\widehat k} \right)} \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k} \right|$
$ = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
$ = \sqrt 6 $
From the above required values,
${\left( {BC} \right)^2} = {\left( {AB} \right)^2} + {\left( {CA} \right)^2}$
${\left( {\sqrt {41} } \right)^2} = {\left( {\sqrt {35} } \right)^2} + {\left( {\sqrt 6 } \right)^2}$
$41 = 35 + 6$
$41 = 41$
Here, the left-hand side is equal to the right-hand side..
It implies that the side of triangle satisfies the Pythagoras theorem i.e., ${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
As we know, Right angle triangle is the triangle that follows Pythagoras theorem
Therefore, the points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ are the vertices of the Right-angled triangle.
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of Triangle. Students must know that to check the triangle is right- angled always use Pythagoras theorem if the sides satisfy the theorem it means the triangle is right-angled. For equilateral no need to do anything all sides will be equal and for isosceles any two sides will be equal.
Formula Used:
Pythagoras theorem –
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
Magnitude of three-dimensional vector –
$Magnitude = \sqrt {{a^2} + {b^2} + {c^2}} $ where the vector is $a\widehat i + b\widehat j + c\widehat k$
Complete step by step Solution:
Given that,
Position vectors of given points A, B, C are
$\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k$
$\overrightarrow b = 2\widehat i - \widehat j + \widehat k$
$\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$
Here, we’ll find the sides of the triangle using position vectors
$AB = \left| {\overrightarrow b - \overrightarrow a } \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k - \left( {3\widehat i - 4\widehat j - 4\widehat k} \right)} \right|$
$ = \left| { - \widehat i + 3\widehat j + 5\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 5 \right)}^2}} $
$ = \sqrt {35} $
$BC = \left| {\overrightarrow c - \overrightarrow b } \right|$
$ = \left| {\widehat i - 3\widehat j - 5\widehat k - \left( {2\widehat i - \widehat j + \widehat k} \right)} \right|$
$ = \left| { - \widehat i - 2\widehat j - 6\widehat k} \right|$
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 6} \right)}^2}} $
$ = \sqrt {41} $
$CA = \left| {\overrightarrow a - \overrightarrow c } \right|$
$ = \left| {3\widehat i - 4\widehat j - 4\widehat k - \left( {\widehat i - 3\widehat j - 5\widehat k} \right)} \right|$
$ = \left| {2\widehat i - \widehat j + \widehat k} \right|$
$ = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
$ = \sqrt 6 $
From the above required values,
${\left( {BC} \right)^2} = {\left( {AB} \right)^2} + {\left( {CA} \right)^2}$
${\left( {\sqrt {41} } \right)^2} = {\left( {\sqrt {35} } \right)^2} + {\left( {\sqrt 6 } \right)^2}$
$41 = 35 + 6$
$41 = 41$
Here, the left-hand side is equal to the right-hand side..
It implies that the side of triangle satisfies the Pythagoras theorem i.e., ${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {perpendicular} \right)^2}$
As we know, Right angle triangle is the triangle that follows Pythagoras theorem
Therefore, the points A, B and C with position vectors, $\overrightarrow a = 3\widehat i - 4\widehat j - 4\widehat k,\overrightarrow b = 2\widehat i - \widehat j + \widehat k,$ and $\overrightarrow c = \widehat i - 3\widehat j - 5\widehat k$ are the vertices of the Right-angled triangle.
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of Triangle. Students must know that to check the triangle is right- angled always use Pythagoras theorem if the sides satisfy the theorem it means the triangle is right-angled. For equilateral no need to do anything all sides will be equal and for isosceles any two sides will be equal.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Course 2025: Get All the Relevant Details
