
The radial wave function of an orbital is $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$ for H-atom. The wave function is for-(notations have their usual meaning)
A.$1s$
B. $2s$
C. $2p$
D. $3p$
Answer
138.6k+ views
Hint: The wave function for Hydrogen atoms depends upon three variables one of which is $\theta $ which gives the electron's angular momentum.
Step-by-Step Solution: We are given the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$
Where r=radius in atomic units, Z= the effective nuclear charge for that orbital in that atom
e=$2.718$. We have to find the wave function.
The wave function gives crucial information about the electron’s energy, angular momentum and orbital orientation. The wave function for a hydrogen atom depends upon three variables one of which is $\theta $ which gives the electron's angular momentum.
And the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$ is for $1s$ orbital because it gives
$p(\theta ) = \dfrac{1}{{\sqrt 2 }}$ .
Hence the correct answer is A.
Additional Information: Wave function is a mathematical function represented by φ(psi). Wave function can also be expressed as the product of radial wave function R and angular wave function. The R radial wave function of an atom depends upon the atomic radius only while angular function depends only on direction thus describes the shape of an orbital. Thus we can write-
$ \Rightarrow $ φ=R×Y
Note: The wave function can be calculated exactly only for atoms with one electron like hydrogen,$H{e^ + }$ and other atoms having only one electron. This means that wave function is possible only for said one-electron system which is also described as hydrogenic. Hydrogenic means ‘like hydrogen’. Wave function can be obtained by solving the Schrödinger equation. It explains why there is a single $1s$orbital, why there are three $2p$ orbitals and so on.
Step-by-Step Solution: We are given the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$
Where r=radius in atomic units, Z= the effective nuclear charge for that orbital in that atom
e=$2.718$. We have to find the wave function.
The wave function gives crucial information about the electron’s energy, angular momentum and orbital orientation. The wave function for a hydrogen atom depends upon three variables one of which is $\theta $ which gives the electron's angular momentum.
And the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$ is for $1s$ orbital because it gives
$p(\theta ) = \dfrac{1}{{\sqrt 2 }}$ .
Hence the correct answer is A.
Additional Information: Wave function is a mathematical function represented by φ(psi). Wave function can also be expressed as the product of radial wave function R and angular wave function. The R radial wave function of an atom depends upon the atomic radius only while angular function depends only on direction thus describes the shape of an orbital. Thus we can write-
$ \Rightarrow $ φ=R×Y
Note: The wave function can be calculated exactly only for atoms with one electron like hydrogen,$H{e^ + }$ and other atoms having only one electron. This means that wave function is possible only for said one-electron system which is also described as hydrogenic. Hydrogenic means ‘like hydrogen’. Wave function can be obtained by solving the Schrödinger equation. It explains why there is a single $1s$orbital, why there are three $2p$ orbitals and so on.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
