Answer
Verified
99.9k+ views
Hint: The wave function for Hydrogen atoms depends upon three variables one of which is $\theta $ which gives the electron's angular momentum.
Step-by-Step Solution: We are given the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$
Where r=radius in atomic units, Z= the effective nuclear charge for that orbital in that atom
e=$2.718$. We have to find the wave function.
The wave function gives crucial information about the electron’s energy, angular momentum and orbital orientation. The wave function for a hydrogen atom depends upon three variables one of which is $\theta $ which gives the electron's angular momentum.
And the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$ is for $1s$ orbital because it gives
$p(\theta ) = \dfrac{1}{{\sqrt 2 }}$ .
Hence the correct answer is A.
Additional Information: Wave function is a mathematical function represented by φ(psi). Wave function can also be expressed as the product of radial wave function R and angular wave function. The R radial wave function of an atom depends upon the atomic radius only while angular function depends only on direction thus describes the shape of an orbital. Thus we can write-
$ \Rightarrow $ φ=R×Y
Note: The wave function can be calculated exactly only for atoms with one electron like hydrogen,$H{e^ + }$ and other atoms having only one electron. This means that wave function is possible only for said one-electron system which is also described as hydrogenic. Hydrogenic means ‘like hydrogen’. Wave function can be obtained by solving the Schrödinger equation. It explains why there is a single $1s$orbital, why there are three $2p$ orbitals and so on.
Step-by-Step Solution: We are given the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$
Where r=radius in atomic units, Z= the effective nuclear charge for that orbital in that atom
e=$2.718$. We have to find the wave function.
The wave function gives crucial information about the electron’s energy, angular momentum and orbital orientation. The wave function for a hydrogen atom depends upon three variables one of which is $\theta $ which gives the electron's angular momentum.
And the radial wave function of an orbital = $2{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{\dfrac{{Zr}}{{ - {a_0}}}}}$ is for $1s$ orbital because it gives
$p(\theta ) = \dfrac{1}{{\sqrt 2 }}$ .
Hence the correct answer is A.
Additional Information: Wave function is a mathematical function represented by φ(psi). Wave function can also be expressed as the product of radial wave function R and angular wave function. The R radial wave function of an atom depends upon the atomic radius only while angular function depends only on direction thus describes the shape of an orbital. Thus we can write-
$ \Rightarrow $ φ=R×Y
Note: The wave function can be calculated exactly only for atoms with one electron like hydrogen,$H{e^ + }$ and other atoms having only one electron. This means that wave function is possible only for said one-electron system which is also described as hydrogenic. Hydrogenic means ‘like hydrogen’. Wave function can be obtained by solving the Schrödinger equation. It explains why there is a single $1s$orbital, why there are three $2p$ orbitals and so on.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The values of kinetic energy K and potential energy class 11 physics JEE_Main