
The ripple factor in a half-wave rectifier is
(A) 1.21
(B) 0.48
(C) 06
(D) None of these
Answer
133.5k+ views
Hint Ripple is defined as the unwanted AC component that remains in a circuit while converting the AC voltage into a DC Voltage. Write down the ripple formula for a half wave rectifier and substitute the values for a standard AC circuit and find the value.
Complete Step By Step Solution
A Half wave rectifier is a type of rectifier which is tuned to allow only one half cycle of alternating transformation wave to pass and block the other half , which converts one half AC voltage into DC voltage. This rectifier requires only one single diode to achieve this operation.
In general, the ripple factor is defined as the ratio of the Root mean squared value of the AC component and the DC component RMS value that’s obtained as the output of the rectifier. The main reason behind the occurrence of ripple factor is due to the presence of unwanted AC components that are still fluctuating in a rectifier circuit during the conversion process.
Mathematically ,ripple factor is given
\[\gamma = \sqrt {{{(\dfrac{{{V_{rms}}}}{{{V_{DC}}}})}^2} - 1} \]
Where \[{V_{rms}}\] stands for AC voltage and \[{V_{DC}}\]stands for output DC voltage.
The above equation can also be rearranged to give ,Ripple factor (r)
\[r = \sqrt {(\dfrac{{{I^2}_{rms}}}{{{I^2}_{DC}}}) - 1} \]
For a half wave rectifier, we know it operates only in half cycle. Therefore the current and voltage values will be halved from the original to provide desired output.
Thus, we get, \[{I_{rms}} = {I_m}/2\] and \[{I_{DC}} = {I_m}/\pi \]. Substituting this on the above formula we get,
\[ \Rightarrow r = \sqrt {(\dfrac{{{I^2}_{rms}}}{{{I^2}_{DC}}}) - 1} \]
\[ \Rightarrow r = \sqrt {\dfrac{{(\dfrac{{{I^2}_m}}{4})}}{{(\dfrac{{{I^2}_m}}{{{\pi ^2}}})}} - 1} \]
\[ \Rightarrow r = \sqrt {(\dfrac{{{\pi ^2} - 4}}{4}) - 1} = 1.21\]( For a standard half wave-rectifier)
Thus, option(a) is the right answer for the given question.
Note In order to construct an efficient rectifier, the ripple factor must be kept very low. Usage of external components such as capacitors and inductors as primary filters will help to reduce the ripples occurring in the circuit.
Complete Step By Step Solution
A Half wave rectifier is a type of rectifier which is tuned to allow only one half cycle of alternating transformation wave to pass and block the other half , which converts one half AC voltage into DC voltage. This rectifier requires only one single diode to achieve this operation.
In general, the ripple factor is defined as the ratio of the Root mean squared value of the AC component and the DC component RMS value that’s obtained as the output of the rectifier. The main reason behind the occurrence of ripple factor is due to the presence of unwanted AC components that are still fluctuating in a rectifier circuit during the conversion process.
Mathematically ,ripple factor is given
\[\gamma = \sqrt {{{(\dfrac{{{V_{rms}}}}{{{V_{DC}}}})}^2} - 1} \]
Where \[{V_{rms}}\] stands for AC voltage and \[{V_{DC}}\]stands for output DC voltage.
The above equation can also be rearranged to give ,Ripple factor (r)
\[r = \sqrt {(\dfrac{{{I^2}_{rms}}}{{{I^2}_{DC}}}) - 1} \]
For a half wave rectifier, we know it operates only in half cycle. Therefore the current and voltage values will be halved from the original to provide desired output.
Thus, we get, \[{I_{rms}} = {I_m}/2\] and \[{I_{DC}} = {I_m}/\pi \]. Substituting this on the above formula we get,
\[ \Rightarrow r = \sqrt {(\dfrac{{{I^2}_{rms}}}{{{I^2}_{DC}}}) - 1} \]
\[ \Rightarrow r = \sqrt {\dfrac{{(\dfrac{{{I^2}_m}}{4})}}{{(\dfrac{{{I^2}_m}}{{{\pi ^2}}})}} - 1} \]
\[ \Rightarrow r = \sqrt {(\dfrac{{{\pi ^2} - 4}}{4}) - 1} = 1.21\]( For a standard half wave-rectifier)
Thus, option(a) is the right answer for the given question.
Note In order to construct an efficient rectifier, the ripple factor must be kept very low. Usage of external components such as capacitors and inductors as primary filters will help to reduce the ripples occurring in the circuit.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
