
The self-induced emf of a coil is $20volts$, when the current in it is changed at a uniform rate from $10A$ to $25A$ in$2s$. The change in the energy of the inductance is____________. (in $J$)
Answer
133.5k+ views
Hint: Recall that the change in energy is related to the self inductance of the coil and the change in current. First, we need to find the value of the self inductance of the coil, for that, remember the inductance is related to the rate of change of current with respect to the time and the induced emf. Further calculation should be done with the required unit conversions.
Complete step by step solution:
It is given the question that the self-induced emf of a coil is $20volts$.
Change in current is from $10A$ to $25A$.
Time taken for the uniform change of the current is $2s$.
We need to find the value of the self-inductance during this time.
For that we take the formula which relates the voltage and the self-inductance.
It is known that, $v = L\dfrac{{dI}}{{dt}}$
Where, $v$ is the self-induced emf of a coil
$L$ is self-inductance.
$dI$ is the change in the current at uniform rate
$dt$ is the time taken for the uniform change of the current.
Applying the values of the known values in the above equation we get,
$v = L\dfrac{{dI}}{{dt}}$
$ \Rightarrow 20 = L\dfrac{{(25 - 10)}}{2}$
$L = \dfrac{{40}}{{15}} = \dfrac{8}{3}H$
Here, in the question we are asked to find the value of the change in the energy.
Change in energy, $\Delta E = \dfrac{1}{2}L{I^2}$
Here, the value of ${I^2}$ is given by the difference between the square of the final current and the square of the initial current.
That is, ${I^2} = ({I_2}^2 - {I_1}^2)$
We know The final current,${I_2}$ = $25A$
The initial current ${I_1}$=$10A$
Applying these values to the equation for the change in energy,
$\Delta E = \dfrac{1}{2}L{I^2}$
$ \Rightarrow \Delta E = \dfrac{1}{2} \times \dfrac{8}{3}\left( {{{25}^2} - {{10}^2}} \right)$
$ \Rightarrow \Delta E = \dfrac{1}{2} \times \dfrac{8}{3}\left( {625 - 100} \right)$
$ \Rightarrow \Delta E = \dfrac{8}{6} \times 525$
$ \therefore \Delta E = 700J$
That is the change in energy when the current is changed at a uniform rate from $10A$ to $25A$ in $2s$ will be equal to, $\Delta E = 700J$.
Note: This energy is actually stored in the magnetic field generated by the current flowing through the inductor. In a pure inductor, the energy is stored without loss, and is returned to the rest of the circuit when the current through the inductor is ramped down, and its associated magnetic field collapses.
Complete step by step solution:
It is given the question that the self-induced emf of a coil is $20volts$.
Change in current is from $10A$ to $25A$.
Time taken for the uniform change of the current is $2s$.
We need to find the value of the self-inductance during this time.
For that we take the formula which relates the voltage and the self-inductance.
It is known that, $v = L\dfrac{{dI}}{{dt}}$
Where, $v$ is the self-induced emf of a coil
$L$ is self-inductance.
$dI$ is the change in the current at uniform rate
$dt$ is the time taken for the uniform change of the current.
Applying the values of the known values in the above equation we get,
$v = L\dfrac{{dI}}{{dt}}$
$ \Rightarrow 20 = L\dfrac{{(25 - 10)}}{2}$
$L = \dfrac{{40}}{{15}} = \dfrac{8}{3}H$
Here, in the question we are asked to find the value of the change in the energy.
Change in energy, $\Delta E = \dfrac{1}{2}L{I^2}$
Here, the value of ${I^2}$ is given by the difference between the square of the final current and the square of the initial current.
That is, ${I^2} = ({I_2}^2 - {I_1}^2)$
We know The final current,${I_2}$ = $25A$
The initial current ${I_1}$=$10A$
Applying these values to the equation for the change in energy,
$\Delta E = \dfrac{1}{2}L{I^2}$
$ \Rightarrow \Delta E = \dfrac{1}{2} \times \dfrac{8}{3}\left( {{{25}^2} - {{10}^2}} \right)$
$ \Rightarrow \Delta E = \dfrac{1}{2} \times \dfrac{8}{3}\left( {625 - 100} \right)$
$ \Rightarrow \Delta E = \dfrac{8}{6} \times 525$
$ \therefore \Delta E = 700J$
That is the change in energy when the current is changed at a uniform rate from $10A$ to $25A$ in $2s$ will be equal to, $\Delta E = 700J$.
Note: This energy is actually stored in the magnetic field generated by the current flowing through the inductor. In a pure inductor, the energy is stored without loss, and is returned to the rest of the circuit when the current through the inductor is ramped down, and its associated magnetic field collapses.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
