
The side \[{\text{BC}}\] of a triangle \[{\text{ABC}}\] is bisected at \[{\text{D}}\]; \[{\text{O}}\] is any point in \[{\text{AD}}\]. \[{\text{BO}}\] and \[{\text{CO}}\] produced to meet \[{\text{AC}}\] and \[{\text{AB}}\] in \[{\text{E}}\] and \[{\text{F}}\] respectively and \[{\text{AD}}\] is produced to \[{\text{X}}\] so that \[{\text{D}}\] is the midpoint of \[{\text{OX}}\]. Prove that \[{\text{AO:AX = AF:AB}}\] and show that \[{\text{EF}}\] is parallel to \[{\text{BC}}\].

Answer
143.1k+ views
Hint— The quadrilateral \[{\text{BOCX}}\] represents a parallelogram as the diagonals \[{\text{OX}}\] and \[{\text{BC}}\] intersects each other. So use the definition of a parallelogram which states that the opposite sides of a parallelogram are parallel to each other as \[{\text{D}}\] is the midpoint of the line \[{\text{BC}}\] which divides the line into two parts equally.
Complete step-by-step solution
We are given in the question that the side \[{\text{BC}}\] of a triangle \[{\text{ABC}}\] is bisected at \[{\text{D}}\]; \[{\text{O}}\] is any point in \[{\text{AD}}\]. \[{\text{BO}}\] and \[{\text{CO}}\] are produced to meet \[{\text{AC}}\] and \[{\text{AB}}\] in \[{\text{E}}\] and \[{\text{F}}\] respectively and \[{\text{AD}}\] is produced to \[{\text{X}}\] so that \[{\text{D}}\] is the midpoint of \[{\text{OX}}\].
There are two objectives that need to be fulfilled. First is to prove that \[{\text{AO:AX = AF:AB}}\] and secondly we need to show that \[{\text{EF}}\] is parallel to \[{\text{BC}}\].
Consider the first objective,
As from the figure it is clear that, in a quadrilateral \[{\text{BOCX}}\] \[{\text{BD = DC}}\] and \[{\text{DO = DX}}\] as \[{\text{D}}\] is the midpoint of the line \[{\text{BC}}\] and \[{\text{OX}}\].
Since, the diagonals \[{\text{OX}}\] and \[{\text{BC}}\] of a quadrilateral \[{\text{BOCX}}\] intersects each other at \[{\text{D}}\].
Therefore, the quadrilateral \[{\text{BOCX}}\] becomes the parallelogram \[{\text{BOCX}}\].
Further, use the definition of parallelogram, which states that the opposite sides of a parallelogram are parallel to each other.
Thus, we get that,
\[{\text{BX||CO}}\] and \[{\text{CX||BO}}\]
Or \[{\text{BX||CF}}\] and \[{\text{CX||BE}}\]
Or \[{\text{BX||OF}}\] and \[{\text{CX||OE}}\]
Now, since \[{\text{BX||OF}}\] in the \[\Delta {\text{ABX}}\],
We get, \[\dfrac{{{\text{AO}}}}{{{\text{AX}}}} = \dfrac{{{\text{AF}}}}{{{\text{AB}}}}\]
Thus, from equation (1) we can conclude that \[{\text{AO:AX = AF:AB}}\]
Consider the second objective,
From above solution we have, \[\dfrac{{{\text{AO}}}}{{{\text{AX}}}} = \dfrac{{{\text{AF}}}}{{{\text{AB}}}}\] ---(1)
Next, we have \[{\text{CX||OE}}\] in the \[\Delta {\text{ACX}}\],
Thus, we get, \[\dfrac{{{\text{AO}}}}{{{\text{AX}}}} = \dfrac{{{\text{AE}}}}{{{\text{AC}}}}\] ---(2)
Consider the equations (1) and (2),
We get that,
\[\dfrac{{{\text{AF}}}}{{{\text{AB}}}} = \dfrac{{{\text{AE}}}}{{{\text{AC}}}}\]
Thus, we can conclude that as the points \[{\text{E}}\] and \[{\text{F}}\] divides the lines \[{\text{AB}}\] and \[{\text{AC}}\] respectively in the same ratio, so, \[{\text{FE||BC}}\].
Note: Do not forget to use the fact that as the diagonals of a quadrilateral bisect each other then the quadrilateral becomes the parallelogram and as the lines are parallel to each other, we can determine the ratio between the lines as the particular point cuts them. The midpoint divides the line into exactly two parts and both the parts are of equal length. When the points divide the lines in the same ratio then the lines are parallel to each other as shown.
Complete step-by-step solution
We are given in the question that the side \[{\text{BC}}\] of a triangle \[{\text{ABC}}\] is bisected at \[{\text{D}}\]; \[{\text{O}}\] is any point in \[{\text{AD}}\]. \[{\text{BO}}\] and \[{\text{CO}}\] are produced to meet \[{\text{AC}}\] and \[{\text{AB}}\] in \[{\text{E}}\] and \[{\text{F}}\] respectively and \[{\text{AD}}\] is produced to \[{\text{X}}\] so that \[{\text{D}}\] is the midpoint of \[{\text{OX}}\].
There are two objectives that need to be fulfilled. First is to prove that \[{\text{AO:AX = AF:AB}}\] and secondly we need to show that \[{\text{EF}}\] is parallel to \[{\text{BC}}\].
Consider the first objective,
As from the figure it is clear that, in a quadrilateral \[{\text{BOCX}}\] \[{\text{BD = DC}}\] and \[{\text{DO = DX}}\] as \[{\text{D}}\] is the midpoint of the line \[{\text{BC}}\] and \[{\text{OX}}\].
Since, the diagonals \[{\text{OX}}\] and \[{\text{BC}}\] of a quadrilateral \[{\text{BOCX}}\] intersects each other at \[{\text{D}}\].
Therefore, the quadrilateral \[{\text{BOCX}}\] becomes the parallelogram \[{\text{BOCX}}\].
Further, use the definition of parallelogram, which states that the opposite sides of a parallelogram are parallel to each other.
Thus, we get that,
\[{\text{BX||CO}}\] and \[{\text{CX||BO}}\]
Or \[{\text{BX||CF}}\] and \[{\text{CX||BE}}\]
Or \[{\text{BX||OF}}\] and \[{\text{CX||OE}}\]
Now, since \[{\text{BX||OF}}\] in the \[\Delta {\text{ABX}}\],
We get, \[\dfrac{{{\text{AO}}}}{{{\text{AX}}}} = \dfrac{{{\text{AF}}}}{{{\text{AB}}}}\]
Thus, from equation (1) we can conclude that \[{\text{AO:AX = AF:AB}}\]
Consider the second objective,
From above solution we have, \[\dfrac{{{\text{AO}}}}{{{\text{AX}}}} = \dfrac{{{\text{AF}}}}{{{\text{AB}}}}\] ---(1)
Next, we have \[{\text{CX||OE}}\] in the \[\Delta {\text{ACX}}\],
Thus, we get, \[\dfrac{{{\text{AO}}}}{{{\text{AX}}}} = \dfrac{{{\text{AE}}}}{{{\text{AC}}}}\] ---(2)
Consider the equations (1) and (2),
We get that,
\[\dfrac{{{\text{AF}}}}{{{\text{AB}}}} = \dfrac{{{\text{AE}}}}{{{\text{AC}}}}\]
Thus, we can conclude that as the points \[{\text{E}}\] and \[{\text{F}}\] divides the lines \[{\text{AB}}\] and \[{\text{AC}}\] respectively in the same ratio, so, \[{\text{FE||BC}}\].
Note: Do not forget to use the fact that as the diagonals of a quadrilateral bisect each other then the quadrilateral becomes the parallelogram and as the lines are parallel to each other, we can determine the ratio between the lines as the particular point cuts them. The midpoint divides the line into exactly two parts and both the parts are of equal length. When the points divide the lines in the same ratio then the lines are parallel to each other as shown.
Recently Updated Pages
Difference Between Area and Volume

Difference Between Mutually Exclusive and Independent Events

Product to Sum Formulae - Important Concepts and Tips for JEE

Sum to Product Formulae - Important Concepts and Tips for JEE

Percentage Composition - Important Concepts and Tips for JEE

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Main Question Papers 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main Response Sheet 2025 Released – Download Links, and Check Latest Updates

Other Pages
NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

CBSE Class 12 English Core Syllabus 2024-25: Updated Curriculum

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Board Exam Date Sheet Class 10 2025 (Released): Download Class 10th Exam Dates PDF
