Answer
Verified
112.5k+ views
Hint: Proton and alpha particles are both positive species. But they differ in their mass and charge. Alpha particle has more charge and mass when compared to a proton.
Complete step by step solution:
> In the question, it is given that the proton has specific charge of \[9.6\times {{10}^{7}}Ck{{g}^{-1}}\]
> Let us consider Helium nucleus. It is also called an alpha particle and has a charge of +2 on it.
> We know that a specific charge of a proton is the charge on a proton divided by the mass of the proton in the particle. Alpha particle is actually a doubly ionised helium atom with +2 charge. This is twice the charge of the proton and it also has a mass which is almost four times than that of the mass of a proton since there are two protons and two neutrons in the nucleus of Helium.
> Specific charge of a proton can be written as =\[\dfrac{+e}{{{m}_{p}}}\], where \[+e\] is the charge on the proton and \[{{m}_{p}}\] is the mass of the proton.
> Now, for the alpha particle, \[+e\] is double. That is the numerator becomes \[+2e\]. The mass of the alpha particle is 4 x mass of proton, so the denominator of the equation will be \[4{{m}_{p}}\].
Also, Specific charge of alpha particle=\[\dfrac{+2e}{4{{m}_{p}}}\]= \[\dfrac{+e}{{{m}_{p}}}\times \dfrac{1}{2}\]=specific charge of proton \[\times \dfrac{1}{2}\]
Substituting the value of specific charge of proton in the above equation, we get
Specific charge of proton=\[\dfrac{9.6\times {{10}^{7}}}{2}Ck{{g}^{-1}}=4.8\times {{10}^{7}}Ck{{g}^{-1}}\].
Therefore, the correct option to the question is option (d) \[4.8\times {{10}^{7}}Ck{{g}^{-1}}\]
Note: The relation between the alpha particle and proton should be known to solve such problems. Specific charge is the ratio of a particle’s charge and its mass measured in Coulombs per kilogram and charge is measured in coulombs.
Complete step by step solution:
> In the question, it is given that the proton has specific charge of \[9.6\times {{10}^{7}}Ck{{g}^{-1}}\]
> Let us consider Helium nucleus. It is also called an alpha particle and has a charge of +2 on it.
> We know that a specific charge of a proton is the charge on a proton divided by the mass of the proton in the particle. Alpha particle is actually a doubly ionised helium atom with +2 charge. This is twice the charge of the proton and it also has a mass which is almost four times than that of the mass of a proton since there are two protons and two neutrons in the nucleus of Helium.
> Specific charge of a proton can be written as =\[\dfrac{+e}{{{m}_{p}}}\], where \[+e\] is the charge on the proton and \[{{m}_{p}}\] is the mass of the proton.
> Now, for the alpha particle, \[+e\] is double. That is the numerator becomes \[+2e\]. The mass of the alpha particle is 4 x mass of proton, so the denominator of the equation will be \[4{{m}_{p}}\].
Also, Specific charge of alpha particle=\[\dfrac{+2e}{4{{m}_{p}}}\]= \[\dfrac{+e}{{{m}_{p}}}\times \dfrac{1}{2}\]=specific charge of proton \[\times \dfrac{1}{2}\]
Substituting the value of specific charge of proton in the above equation, we get
Specific charge of proton=\[\dfrac{9.6\times {{10}^{7}}}{2}Ck{{g}^{-1}}=4.8\times {{10}^{7}}Ck{{g}^{-1}}\].
Therefore, the correct option to the question is option (d) \[4.8\times {{10}^{7}}Ck{{g}^{-1}}\]
Note: The relation between the alpha particle and proton should be known to solve such problems. Specific charge is the ratio of a particle’s charge and its mass measured in Coulombs per kilogram and charge is measured in coulombs.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6
Thermodynamics Class 11 Notes: CBSE Chapter 5