
The specific heat of metal is 0.67 J/g. Its equivalent mass is 20. What is its exact atomic mass:
(A) 46
(B) 20
(C) 40
(D) 22
Answer
147k+ views
Hint: (1) The specific heat of a substance refers to the amount of heat per unit mass which is required to raise the temperature by one degree Celsius.
(2) Atomic mass of an element refers to the average atomic mass of the atoms of an element measured in atomic mass unit (amu).
Complete step-by-step answer: Given, the specific heat of a metal ${\text{ = 0}}{\text{.67J/g}}$
Also given, the equivalent mass of the metal $ = 20$
To find: the exact atomic mass of the metal.
The relationship between the specific heat and the atomic mass of an element is given by the Dulong-Petit law. According to the Dulong-Petit law, the gram-atomic heat capacity is constant, i.e. the product of the specific heat and the atomic mass of an element is a constant, approximately equal to 6.4. This is the same for all solid elements, about six calories per gram atom.
First, let us convert the specific heat from Joule per gram into calorie per gram.
We know,
$
{\text{1calorie = 4}}{\text{.184Joule}} \\
\Rightarrow {\text{1Joule = }}\dfrac{{\text{1}}}{{{\text{4}}{\text{.184}}}}{\text{calorie}} \\
$
So, the specific heat of the metal in calorie per gram ${\text{ = 0}}{\text{.67J/g = }}\dfrac{{{\text{0}}{\text{.67}}}}{{{\text{4}}{\text{.184}}}}{\text{cal/g = 0}}{\text{.16cal/g}}$
According to Dulong-Petit law, approximate atomic mass × specific heat $ = 6.4$
Therefore, the approximate atomic mass ${\text{ = }}\dfrac{{{\text{6}}{\text{.4}}}}{{{\text{specificheat}}}}{\text{ = }}\dfrac{{{\text{6}}{\text{.4}}}}{{{\text{0}}{\text{.16}}}}{\text{ = 40g}}$
Given, the equivalent mass of the metal $ = 20$
We know that valency is equal to the approximate atomic mass of the metal divided by the equivalent mass of the metal. So, valency $ = \dfrac{{40}}{{20}} = 2$
Therefore, exact atomic mass = valency × equivalent mass ${\text{ = 2 \times 20 = 40g}}$
Hence, the exact atomic mass of the metal is equal to 40g. So, the correct option is (C).
Additional information:
An equivalent statement of Dulong-Petit law is $\dfrac{{\text{C}}}{{\text{n}}}{\text{ = 3R}}$ where C is the heat capacity of the substance, n is the number of moles of the substance and R is the gas constant.
Note: The Dulong-Petit law fails at room temperature for light atoms like Be, B, C etc. because in case of these atoms, the law gives prediction of higher heat capacities than that which are actually found. This difference is because of the high energy vibrational modes that are not populated.
(2) Atomic mass of an element refers to the average atomic mass of the atoms of an element measured in atomic mass unit (amu).
Complete step-by-step answer: Given, the specific heat of a metal ${\text{ = 0}}{\text{.67J/g}}$
Also given, the equivalent mass of the metal $ = 20$
To find: the exact atomic mass of the metal.
The relationship between the specific heat and the atomic mass of an element is given by the Dulong-Petit law. According to the Dulong-Petit law, the gram-atomic heat capacity is constant, i.e. the product of the specific heat and the atomic mass of an element is a constant, approximately equal to 6.4. This is the same for all solid elements, about six calories per gram atom.
First, let us convert the specific heat from Joule per gram into calorie per gram.
We know,
$
{\text{1calorie = 4}}{\text{.184Joule}} \\
\Rightarrow {\text{1Joule = }}\dfrac{{\text{1}}}{{{\text{4}}{\text{.184}}}}{\text{calorie}} \\
$
So, the specific heat of the metal in calorie per gram ${\text{ = 0}}{\text{.67J/g = }}\dfrac{{{\text{0}}{\text{.67}}}}{{{\text{4}}{\text{.184}}}}{\text{cal/g = 0}}{\text{.16cal/g}}$
According to Dulong-Petit law, approximate atomic mass × specific heat $ = 6.4$
Therefore, the approximate atomic mass ${\text{ = }}\dfrac{{{\text{6}}{\text{.4}}}}{{{\text{specificheat}}}}{\text{ = }}\dfrac{{{\text{6}}{\text{.4}}}}{{{\text{0}}{\text{.16}}}}{\text{ = 40g}}$
Given, the equivalent mass of the metal $ = 20$
We know that valency is equal to the approximate atomic mass of the metal divided by the equivalent mass of the metal. So, valency $ = \dfrac{{40}}{{20}} = 2$
Therefore, exact atomic mass = valency × equivalent mass ${\text{ = 2 \times 20 = 40g}}$
Hence, the exact atomic mass of the metal is equal to 40g. So, the correct option is (C).
Additional information:
An equivalent statement of Dulong-Petit law is $\dfrac{{\text{C}}}{{\text{n}}}{\text{ = 3R}}$ where C is the heat capacity of the substance, n is the number of moles of the substance and R is the gas constant.
Note: The Dulong-Petit law fails at room temperature for light atoms like Be, B, C etc. because in case of these atoms, the law gives prediction of higher heat capacities than that which are actually found. This difference is because of the high energy vibrational modes that are not populated.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
