The third term of a G.P is 4. The product of the first five terms is
A .\[{4^3}\]
B. \[{4^5}\]
C .\[{4^4}\]
D. None of these
Answer
Verified
122.7k+ views
Hint- Proceed the solution of this question by considering the general term of GP in our mind such that their multiplication can itself form such a number which are either known or can be found.
Complete step-by-step solution -
Let the common ratio be r and the terms be ${\text{a,ar,a}}{{\text{r}}^2}{\text{,a}}{{\text{r}}^3}{\text{,a}}{{\text{r}}^4}....$and so on in G.P.
Here a is the 1st number, ${\text{ar}}$ be the 2nd number, ${\text{a}}{{\text{r}}^2}$be the third number and so on.
In the question, it is given that the third term of GP is equal to 4.
⇒${\text{a}}{{\text{r}}^2}$=4 ... (1)
Therefore, the product of the first five term is given by,
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {{\text{a}}^5} \times {{\text{r}}^{10}}\]
On further simplifying
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( {{\text{a}} \times {{\text{r}}^2}} \right)^5}\]
From equation (1), substitute ${\text{a}}{{\text{r}}^2}$=4; we get
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( 4 \right)^5}\]
Thus, the product of the first five term is \[{\left( 4 \right)^5}\]
Hence option B is correct.
Note- In a G.P. as we know that, each term is multiplied by the common ratio \[{\text{r}}\]. To get the second term, the first term is multiplied by \[{\text{r}}\]. We get the third term by multiplying the first term by \[{{\text{r}}^2}\]Similarly, we will get the fourth term by multiplying the first term by \[{{\text{r}}^3}\] and so on. Hence 3rd term is the geometric mean of 2nd and 4th term as well as 1st and 5th term of GP. Hence multiplication of the first 5 numbers can be written in exponential form of their geometrical form.
Complete step-by-step solution -
Let the common ratio be r and the terms be ${\text{a,ar,a}}{{\text{r}}^2}{\text{,a}}{{\text{r}}^3}{\text{,a}}{{\text{r}}^4}....$and so on in G.P.
Here a is the 1st number, ${\text{ar}}$ be the 2nd number, ${\text{a}}{{\text{r}}^2}$be the third number and so on.
In the question, it is given that the third term of GP is equal to 4.
⇒${\text{a}}{{\text{r}}^2}$=4 ... (1)
Therefore, the product of the first five term is given by,
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {{\text{a}}^5} \times {{\text{r}}^{10}}\]
On further simplifying
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( {{\text{a}} \times {{\text{r}}^2}} \right)^5}\]
From equation (1), substitute ${\text{a}}{{\text{r}}^2}$=4; we get
⇒\[{\text{a}} \times {\text{ar}} \times {\text{a}}{{\text{r}}^2} \times {\text{a}}{{\text{r}}^3} \times {\text{a}}{{\text{r}}^4} = {\left( 4 \right)^5}\]
Thus, the product of the first five term is \[{\left( 4 \right)^5}\]
Hence option B is correct.
Note- In a G.P. as we know that, each term is multiplied by the common ratio \[{\text{r}}\]. To get the second term, the first term is multiplied by \[{\text{r}}\]. We get the third term by multiplying the first term by \[{{\text{r}}^2}\]Similarly, we will get the fourth term by multiplying the first term by \[{{\text{r}}^3}\] and so on. Hence 3rd term is the geometric mean of 2nd and 4th term as well as 1st and 5th term of GP. Hence multiplication of the first 5 numbers can be written in exponential form of their geometrical form.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
If there are 25 railway stations on a railway line class 11 maths JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics