The total number of optically active compounds formed in the following reaction is?
(A) Zero
(B) Six
(C) Four
(D) Two
Answer
Verified
122.7k+ views
Hint: This is an additional reaction to the alkene functional groups. A compound that has a chiral carbon can show optical isomerism. If an atom which can donate its lone pairs is bonded to the vinylic carbon, then it can give resonance structures.
Complete step by step solution:
Let’s see what will be the product of this reaction with an explanation.
It is an additional reaction where the addition of Hydrobromic acid is done at two carbons having a double bond. However, there is an oxygen atom which is directly bonded to the vinylic carbon. It will give resonance structures and will direct the position of the incoming electrophile. Let’s see how the addition will occur.
So, we can see that first oxygen will give its lone pair to the vinylic carbon and there will be a carbanion formed after the breakage of C-C double bond. This will attack on the proton and make a sigma bond with it. Then, the bromine atom which is an anion will attack the vinylic carbon and will make a sigma bond with it. The double bond between the carbon and oxygen will be broken and the positive charge on the oxygen atom will be neutralized.
So, our final product can be written as
Now, see all the carbon atoms’ configuration.
- The carbon atom that has four different substituents connected with it by four single bonds, then the carbon is said to be chiral carbon.
In our product, carbon-bearing bromine atoms and the carbon bonded to that carbon is chiral because they have four different groups attached to fulfil their valency of 4 electrons.
-Any compound that has a chiral carbon, has optical isomers.
So, the number of optical isomers produced during this reaction as products=\[{{n}^{2}}\]
Here, n= number of chiral atoms
=\[{{(2)}^{2}}\]
=4
So, we can say that 4 optical isomers will be produced during this reaction. Their structures are as shown below.
So, the correct answer is (C).
Note: Note that as oxygen is there which is directly bonded to the vinylic carbon. This will result in a product such that an anti-Markovnikov type of addition has occurred to the double bond. So, here anti-Markovnikov product is obtained even though peroxide is not present and that is because of the structure of the reactant.
Complete step by step solution:
Let’s see what will be the product of this reaction with an explanation.
It is an additional reaction where the addition of Hydrobromic acid is done at two carbons having a double bond. However, there is an oxygen atom which is directly bonded to the vinylic carbon. It will give resonance structures and will direct the position of the incoming electrophile. Let’s see how the addition will occur.
So, we can see that first oxygen will give its lone pair to the vinylic carbon and there will be a carbanion formed after the breakage of C-C double bond. This will attack on the proton and make a sigma bond with it. Then, the bromine atom which is an anion will attack the vinylic carbon and will make a sigma bond with it. The double bond between the carbon and oxygen will be broken and the positive charge on the oxygen atom will be neutralized.
So, our final product can be written as
Now, see all the carbon atoms’ configuration.
- The carbon atom that has four different substituents connected with it by four single bonds, then the carbon is said to be chiral carbon.
In our product, carbon-bearing bromine atoms and the carbon bonded to that carbon is chiral because they have four different groups attached to fulfil their valency of 4 electrons.
-Any compound that has a chiral carbon, has optical isomers.
So, the number of optical isomers produced during this reaction as products=\[{{n}^{2}}\]
Here, n= number of chiral atoms
=\[{{(2)}^{2}}\]
=4
So, we can say that 4 optical isomers will be produced during this reaction. Their structures are as shown below.
So, the correct answer is (C).
Note: Note that as oxygen is there which is directly bonded to the vinylic carbon. This will result in a product such that an anti-Markovnikov type of addition has occurred to the double bond. So, here anti-Markovnikov product is obtained even though peroxide is not present and that is because of the structure of the reactant.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Online Mock Test for Class 12
Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions
NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids