
The value of \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is
(a) \[3\sqrt 2 \]
(b) \[2\sqrt 2 \]
(c) 3
(d) None of these
Answer
140.1k+ views
Hint:
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models
