There is an inductor of $5\,mH$. Current flowing through the inductor at any instant of time is given by the relation.
$I = {t^2} + 4$
If, is in ampere and $'t'$ in sec, find out
(i) Emf induced in the inductor at $t = 1$ and $t = 3\,s$ .
(ii) Plot $ E \,v/s\,t$ graph.
Answer
Verified
116.4k+ views
Hint: Use the formula of the emf given below and substitute the value of the induction and the equation of the current. Differentiate the current equation, and substitute the value of the time taken in it to find the emf at that corresponding time. The emf is directly proportional to time taken.
Useful formula:
The formula of the emf is given by
$ E = L\dfrac{{di}}{{dt}}$
Where $ E $ is the emf of the inductor, $L$ is the induction and $i$ is the current flowing through the inductor circuit.
Complete step by step solution:
It is given that the
The inductance of the inductor, \[L = 5\,mH = 5 \times {10^{ - 3}}\,H\]
The current through the inductor at time, $i = {t^2} + 4$
(i) Let us calculate the value of the emf through the inductor at $t = 1$ . First, write the formula of the emf,
$ E = L\dfrac{{di}}{{dt}}$
Substitute the known values in the above step,
$ E = 5 \times {10^{ - 3}} \times \dfrac{{d\left( {{t^2} + 4} \right)}}{{dt}}$
By performing differentiation in the above step,
$ E = 5 \times {10^{ - 3}} \times 2t$ -----(1)
Substituting the value of $t$ as $1\,{\text{second}}$ ,
$ E = 0.01\,V$
Let us calculate the emf for $t = 3\,s$ ,by substituting the value of $t$ as $3\,{\text{second}}$ ,
$ E = 5 \times {10^{ - 3}} \times 2 \times 3$
$ E = 30 \times {10^{ - 3}}$
$ E = 0.3\,V$
Hence the emf of the inductor is obtained as $0.01\,V$ for $1\,\operatorname{s} $ time and $0.3\,V$ for the time period of $3\,s$ .
(ii) The below graph shows the relation between the emf and the time taken for the current to flow. The emf is directly proportional to the current and thus the graph is straight line.
Note: The inductors can be functioned in two ways, first is to control signals and in the other is to store electrical energy. In the factor that helps to produce the emf, also generate the reactive fluxes that act against the produced emf.
Useful formula:
The formula of the emf is given by
$ E = L\dfrac{{di}}{{dt}}$
Where $ E $ is the emf of the inductor, $L$ is the induction and $i$ is the current flowing through the inductor circuit.
Complete step by step solution:
It is given that the
The inductance of the inductor, \[L = 5\,mH = 5 \times {10^{ - 3}}\,H\]
The current through the inductor at time, $i = {t^2} + 4$
(i) Let us calculate the value of the emf through the inductor at $t = 1$ . First, write the formula of the emf,
$ E = L\dfrac{{di}}{{dt}}$
Substitute the known values in the above step,
$ E = 5 \times {10^{ - 3}} \times \dfrac{{d\left( {{t^2} + 4} \right)}}{{dt}}$
By performing differentiation in the above step,
$ E = 5 \times {10^{ - 3}} \times 2t$ -----(1)
Substituting the value of $t$ as $1\,{\text{second}}$ ,
$ E = 0.01\,V$
Let us calculate the emf for $t = 3\,s$ ,by substituting the value of $t$ as $3\,{\text{second}}$ ,
$ E = 5 \times {10^{ - 3}} \times 2 \times 3$
$ E = 30 \times {10^{ - 3}}$
$ E = 0.3\,V$
Hence the emf of the inductor is obtained as $0.01\,V$ for $1\,\operatorname{s} $ time and $0.3\,V$ for the time period of $3\,s$ .
(ii) The below graph shows the relation between the emf and the time taken for the current to flow. The emf is directly proportional to the current and thus the graph is straight line.
Note: The inductors can be functioned in two ways, first is to control signals and in the other is to store electrical energy. In the factor that helps to produce the emf, also generate the reactive fluxes that act against the produced emf.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Charging and Discharging of Capacitor
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment