
Three concentric metal shells A, B and C of respectively radii $a$, $b$ & $c$($a < b < c$) have surface charge densities $ + \sigma $, $ - \sigma $ and $ + \sigma $ respectively. The potential of shell B is?
A) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{b^2} - {c^2}}}{b} + a} \right]\]
B) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{b^2} - {c^2}}}{c} + a} \right]\]
C) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{a} + c} \right]\]
D) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\]
Answer
232.8k+ views
Hint: Remember that, potential of a shell will be affected by the charge enclosed in the nearby shells. If the distance between them is smaller when compared to the radius, take radius as the distance, If not take distance between them.
Complete step by step solution:
Let’s define all the data given in the question:
Radii of shell A= $a$
Radii of shell B= $b$
Radii of shell C= $c$
Surface charge density of shell A= $ + \sigma $
Surface charge density of shell B= $ - \sigma $
Surface charge density of shell C= $ + \sigma $
We need to find the potential of shell B.
Potential of shell B will be affected by the charge enclosed in all the three shells, so we get,
${V_B} = \dfrac{{K{q_A}}}{b} + \dfrac{{K{q_B}}}{b} + \dfrac{{K{q_C}}}{c}$
${q_A}$ = the charges enclosed in shell A.
\[{q_B}\] = the charges enclosed in shell B.
${q_C}$ = the charges enclosed in shell C.
The charges enclosed in the shell A,
${q_A} = \sigma (4\pi {a^2})$
The charges enclosed in the shell B,
\[{q_B} = - \sigma (4\pi {b^2})\]
The charges enclosed in the shell C,
${q_C} = \sigma (4\pi {c^2})$
K is a constant and which is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
(${\varepsilon _0}$ is the permittivity in vacuum)
Apply these values to the equation for potential of B, we get,
$ \Rightarrow {V_B} = \dfrac{{\sigma 4\pi }}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - \dfrac{{{b^2}}}{b} + \dfrac{{{c^2}}}{c}} \right]$
Some of the terms gets cancelled:
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - b + c} \right]$
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]$
No we get the value of the potential of the shell B;
So the final answer is option (D). \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\].
Note: The electric potential difference between the inner and outer surface of different states of the object is described as the surface charge. The surface charge density describes the whole amount of charge per unit amount of the area and it will be there only in conducting surfaces. And in a particular field, the charge density describes how much the electric charge is accumulated.
Complete step by step solution:
Let’s define all the data given in the question:
Radii of shell A= $a$
Radii of shell B= $b$
Radii of shell C= $c$
Surface charge density of shell A= $ + \sigma $
Surface charge density of shell B= $ - \sigma $
Surface charge density of shell C= $ + \sigma $
We need to find the potential of shell B.
Potential of shell B will be affected by the charge enclosed in all the three shells, so we get,
${V_B} = \dfrac{{K{q_A}}}{b} + \dfrac{{K{q_B}}}{b} + \dfrac{{K{q_C}}}{c}$
${q_A}$ = the charges enclosed in shell A.
\[{q_B}\] = the charges enclosed in shell B.
${q_C}$ = the charges enclosed in shell C.
The charges enclosed in the shell A,
${q_A} = \sigma (4\pi {a^2})$
The charges enclosed in the shell B,
\[{q_B} = - \sigma (4\pi {b^2})\]
The charges enclosed in the shell C,
${q_C} = \sigma (4\pi {c^2})$
K is a constant and which is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
(${\varepsilon _0}$ is the permittivity in vacuum)
Apply these values to the equation for potential of B, we get,
$ \Rightarrow {V_B} = \dfrac{{\sigma 4\pi }}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - \dfrac{{{b^2}}}{b} + \dfrac{{{c^2}}}{c}} \right]$
Some of the terms gets cancelled:
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - b + c} \right]$
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]$
No we get the value of the potential of the shell B;
So the final answer is option (D). \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\].
Note: The electric potential difference between the inner and outer surface of different states of the object is described as the surface charge. The surface charge density describes the whole amount of charge per unit amount of the area and it will be there only in conducting surfaces. And in a particular field, the charge density describes how much the electric charge is accumulated.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

