Three concentric metal shells A, B and C of respectively radii $a$, $b$ & $c$($a < b < c$) have surface charge densities $ + \sigma $, $ - \sigma $ and $ + \sigma $ respectively. The potential of shell B is?
A) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{b^2} - {c^2}}}{b} + a} \right]\]
B) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{b^2} - {c^2}}}{c} + a} \right]\]
C) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{a} + c} \right]\]
D) \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\]
Answer
Verified
122.7k+ views
Hint: Remember that, potential of a shell will be affected by the charge enclosed in the nearby shells. If the distance between them is smaller when compared to the radius, take radius as the distance, If not take distance between them.
Complete step by step solution:
Let’s define all the data given in the question:
Radii of shell A= $a$
Radii of shell B= $b$
Radii of shell C= $c$
Surface charge density of shell A= $ + \sigma $
Surface charge density of shell B= $ - \sigma $
Surface charge density of shell C= $ + \sigma $
We need to find the potential of shell B.
Potential of shell B will be affected by the charge enclosed in all the three shells, so we get,
${V_B} = \dfrac{{K{q_A}}}{b} + \dfrac{{K{q_B}}}{b} + \dfrac{{K{q_C}}}{c}$
${q_A}$ = the charges enclosed in shell A.
\[{q_B}\] = the charges enclosed in shell B.
${q_C}$ = the charges enclosed in shell C.
The charges enclosed in the shell A,
${q_A} = \sigma (4\pi {a^2})$
The charges enclosed in the shell B,
\[{q_B} = - \sigma (4\pi {b^2})\]
The charges enclosed in the shell C,
${q_C} = \sigma (4\pi {c^2})$
K is a constant and which is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
(${\varepsilon _0}$ is the permittivity in vacuum)
Apply these values to the equation for potential of B, we get,
$ \Rightarrow {V_B} = \dfrac{{\sigma 4\pi }}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - \dfrac{{{b^2}}}{b} + \dfrac{{{c^2}}}{c}} \right]$
Some of the terms gets cancelled:
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - b + c} \right]$
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]$
No we get the value of the potential of the shell B;
So the final answer is option (D). \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\].
Note: The electric potential difference between the inner and outer surface of different states of the object is described as the surface charge. The surface charge density describes the whole amount of charge per unit amount of the area and it will be there only in conducting surfaces. And in a particular field, the charge density describes how much the electric charge is accumulated.
Complete step by step solution:
Let’s define all the data given in the question:
Radii of shell A= $a$
Radii of shell B= $b$
Radii of shell C= $c$
Surface charge density of shell A= $ + \sigma $
Surface charge density of shell B= $ - \sigma $
Surface charge density of shell C= $ + \sigma $
We need to find the potential of shell B.
Potential of shell B will be affected by the charge enclosed in all the three shells, so we get,
${V_B} = \dfrac{{K{q_A}}}{b} + \dfrac{{K{q_B}}}{b} + \dfrac{{K{q_C}}}{c}$
${q_A}$ = the charges enclosed in shell A.
\[{q_B}\] = the charges enclosed in shell B.
${q_C}$ = the charges enclosed in shell C.
The charges enclosed in the shell A,
${q_A} = \sigma (4\pi {a^2})$
The charges enclosed in the shell B,
\[{q_B} = - \sigma (4\pi {b^2})\]
The charges enclosed in the shell C,
${q_C} = \sigma (4\pi {c^2})$
K is a constant and which is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
(${\varepsilon _0}$ is the permittivity in vacuum)
Apply these values to the equation for potential of B, we get,
$ \Rightarrow {V_B} = \dfrac{{\sigma 4\pi }}{{4\pi {\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - \dfrac{{{b^2}}}{b} + \dfrac{{{c^2}}}{c}} \right]$
Some of the terms gets cancelled:
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2}}}{b} - b + c} \right]$
$ \Rightarrow {V_B} = \dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]$
No we get the value of the potential of the shell B;
So the final answer is option (D). \[\dfrac{\sigma }{{{\varepsilon _0}}}\left[ {\dfrac{{{a^2} - {b^2}}}{b} + c} \right]\].
Note: The electric potential difference between the inner and outer surface of different states of the object is described as the surface charge. The surface charge density describes the whole amount of charge per unit amount of the area and it will be there only in conducting surfaces. And in a particular field, the charge density describes how much the electric charge is accumulated.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Chemistry Exam Pattern 2025
Charging and Discharging of Capacitor
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Collision - Important Concepts and Tips for JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Course 2025: Get All the Relevant Details